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Abstract

We consider pricing schemes for matching customers and providers on
double-sided markets for electronic services. While existing second-best solutions
are incentive compatible, the associated payment functions are difficult to
implement in real-world settings. Based on the VCG and the k-pricing mechanism,
we propose two straightforward payment rules that offer a practical alternative
to the second-best solution. Our experiments provide evidence that the VCG
payments fail to implement incentive compatibility. This failure is due to the
interdependency of the participants’ utilities.

Keywords: Mechanism design, electronic services, pricing, double-sided
markets, Vickrey auction
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1. Introduction

Matching the right pairs of competitive customers and providers for electronic
services on double-sided markets is an important optimization problem in
Operations Research [2]. On these markets, multiple service providers offer
electronic services of a specified quality of service (QoS), while multiple customers
demand these services at a specific QoS. To this end, matching markets have
recently emerged in different business areas including Cloud computing [1].

In common market settings, strategic participants may engage in bid
manipulation in order to influence their transaction prices. While first-best
solutions are not available in such environments [10], second-best mechanisms
for matching customers and providers with interdependent utilities exist [15].
Although such mechanisms satisfy incentive compatibility and individual
rationality, the associated payment structures are difficult to implement in
real-world scenarios. Attempts to simplify the payment scheme, however, may
open the way for strategic participants to increase their utilities by misrepresenting
their bids. Thus, before modifying the payments, the mechanism designer must
obtain an accurate estimation for the potential utility gain that participants can
achieve due to strategic bid manipulation.

Prior research studies the average utility gain of participants with independent
utilities on markets for electronic services. The mechanism proposed by Schnizler
et al. uses k-pricing to provide a simple payment scheme that is well-suited
for real-world electronic service exchange [12]. While their approach allows
for estimating the utility gain of strategic participants, it does not consider
interdependent utilities. Lee analyzes the manipulability of stable matching
mechanisms to quantify the utility gain participants can expect through bid
manipulation [8]. Yet concrete payment schemes for real-world markets are
missing. In the context of generalized assignment problems, Fadaei and Bichler
propose truthful approximation mechanisms in payment-free environments [3].
Fadaei and Bichler use the optimal welfare value as a benchmark to estimate
the efficiency loss due to strategic bidding. Because they consider mechanism
design without money, no payment rules are provided. Widmer and Leukel [15]
provide a lower bound for the efficiency of a second-best mechanism that allocates
electronic services with private quality information. Although they specify
the incentive compatible payments of customers and providers in double-sided
markets, these payment rules turn out to be inexpedient for implementing the
associated mechanism in real-world environments.

The objective of our research is to study the efficiency loss of a mechanism
with two straightforward payment schemes for electronic service matching
in double-sided markets. We apply these two payment schemes to markets
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where participants have interdependent utilities. The first payment scheme is
based on the prominent Vickrey-Clarke-Groves (VCG) pricing rules [14], which
satisfy incentive compatibility in single-unit and certain multi-unit procurement
auctions [5]. The second payment scheme is based on k-pricing introduced by
Sattherthwaite and Williams [11], where the price is simply calculated as the
arithmetic mean of customer valuation and provider cost. Mechanisms with
k-pricing, however, are not incentive compatible [10]. In a set of simulation
experiments, we study the potential utility gains that participants can expect
through strategic bid manipulation.

We find that in our model with interdependent utilities, the prominent VCG
mechanism is not incentive compatible. The reason for the failure of incentive
compatibility is that strategic customers and providers can manipulate their
perceived impact on social surplus through the utilities of their matched partners.
Hence, participants are able to increase their utilities by manipulation even when
VCG pricing is used. The evaluation results for both payment schemes provide an
accurate estimation for these utility gains.

2. Formal framework

There are two disjoint sets of participants in the market, namely customers and
providers. In order to obtain benchmark results for arbitrary market settings, we
begin by assuming an equal number N of customer and providers on each market
side in this article. This assumption is consistent with prior research investigating
mechanisms for allocating electronic services [12]. We revisit this assumption in
our discussion of future research directions (cf. section 4.3).

Each provider attempts to sell an electronic service to one customer, and each
customer seeks to buy a service from one provider. Each customer i demands for a
privately known QoS θi, and each provider offers their service at a privately known
QoS σ j.

If customer i receives the service of provider j, i produces the pairwise
private valuation v(θi,σ j). This valuation depends on i’s desired quality, as
well as on the difference between its own desired quality and provider j’s actual
quality. This situation depicts a market in which customer valuation functions are
non-monotonic in the quality offered by the provider. For instance, a customer may
prefer a service with medium over high computational capacity. A high-capacity
service is well able to process many simultaneous requests from the customer’s
application that uses this service. If, however, this application does not have
enough computational power or resources, the application will fail to answer these
simultaneous requests in due time. This failure leads to higher buffering in the
application and thus longer response times. Therefore, a customer’s valuation must
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take into account the application that uses the service and the tradeoff between
being idle or buffering heavily [6]. Therefore, we assume that any mismatch in
desired quality and actual quality creates adjustment problems for the customer.
That is, v(θi,σ j) is maximized when the supplied quality and the desired quality
are equal (i.e., when θi = σ j). By assumption, the maximal value is increasing in
θi.

On the supply side, if provider j sells a service to customer i, j accrues a service
provision cost c(σ j,θi), which depends on the actual quality and on the difference
between the own actual quality and the customer’s desired quality. If a provider
produces a quality lower than the quality desired by a customer, this provider incurs
higher cost from not fulfilling the requirements. If, in contrast, a provider maintains
higher quality than desired, their cost increases due to idle resources [4]. Hence,
we assume that c(σ j,θi) is minimized when σ j = θi and that the minimal value
is increasing in σ j. This assumption captures the fact that a mismatch in actual
quality and desired quality creates higher provision cost resulting from after-sales
customer service cost and missed opportunity cost. Both v(θi,σ j) and c(σ j,θi) are
assumed to be thrice differentiable.

Customers and providers use quasi-linear utilities. Hence, customer i paying tc
for receiving an electronic service from j obtains a payoff of

uc(θi,σ j) = v(θi,σ j)− tc, (1)

and provider j receiving tp for delivering the service to customer i obtains a
payoff of

up(σ j,θi) = tp− c(σ j,θi). (2)

This research takes the perspective of a social planner, who is interested in
maximizing the sum of the participants’ welfare. Therefore, the social planner aims
at maximizing the social surplus among all participants. Let xi j ∈ {0,1} denote the
decision variable, which is 1 if customer i receives the electronic service from
provider j in the final allocation, and 0 otherwise. Thus, the mechanism faces the
following optimization problem:
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max
xi j

N

∑
i=1

N

∑
j=1

(v(θi,σ j)− c(σ j,θi))xi j (3)

s.t. 0≤∑
j

xi j ≤ 1 ∀i (4)

0≤∑
i

xi j ≤ 1 ∀ j. (5)

The expression in (3) adds up the pairwise match surplus across all customers
and providers and determines the allocation that maximizes the social welfare.
Notice that the payments tc and tp do not appear in (3) because they add up to
zero due to the budget balance constraint. Constraints (4) and (5) ensure that each
customer is matched to exactly one service provider in the final allocation.

3. Mechanism definition

3.1. Allocation rule

The allocation rule of the mechanism must ensure that the final allocation of
customers and providers maximizes the social welfare defined in (3). In many
auction settings, it is difficult to determine the winners of the auction due to
computational complexity issues. In supermodular environments, however, it turns
out that the allocation rule, which maximizes the social welfare, adopts a rather
simple form. Let ρθ (θi) = |{θk ∈ θ : θk ≥ θi}| be the rank of desired quality
θi within the vector of all customers’ desired qualities θ = {θ1, . . . ,θN}. Define
ρσ (σi) similarly for providers. Then, the allocation rule is given by

xi j =

{
1 if ρθ (θi) = ρσ (σ j) = k ∧ v(θi,σ j)− c(σ j,θi)≥ 0,
0 otherwise

(6)

In other words, the mechanism accepts the bids θi of all customers and the bids
σ j of all providers, sorts each side in descending order, and allocates customers and
providers that are on the same rank from top to bottom. That is, the allocation rule
of the mechanism is positively assortative. It maximizes the optimization problem
in (3) because the pairwise surplus v(θi,σ j)−c(σ j,θi) is a supermodular function.
If the pairwise surplus function is supermodular, the optimal match function is
positively assortative [13].

7



3.2. Pricing

After having obtained the welfare maximizing allocation rule in (6), it is
crucial to determine the payments made by the participants for electronic service
allocation. For designing an efficient mechanism, these payments must guarantee
that no participant has an incentive to deviate from their true bid. That is, the
payments must ensure incentive compatibility. It is well-known that a pricing
scheme based on the VCG mechanism [14] is incentive compatible for a single
customer who buys one unit of a product from a set of providers [5]. Moreover, the
VCG mechanism ensures incentive compatibility in settings with many customers
and many providers that exchange specific electronic services. On such markets,
however, budget balance cannot be achieved [12]. A practical alternative for VCG
payments is a pricing scheme based on k-pricing. The k-pricing scheme determines
the payments by equally splitting the difference between the bids of customers
and providers [11]. Appropriate VCG and k-pricing payments for the proposed
mechanism are introduced in the following sections.

3.2.1. VCG pricing
In a VCG mechanism, each participant’s impact on the social welfare is

internalized through their payments such that the other participants receive the
same payoff, regardless of the participant’s bid [9]. That is, the payments of each
participant is set equal to their impact on social surplus relative to the reports.
To be more specific, let θ̂i denote the desired QoS submitted to the mechanism
by customer i and let σ̂ j denote the offered QoS submitted to the mechanism by
provider j. Then i’s payment for service consumption is

t i
c =−

N

∑
k=1
k 6=i

N

∑
j=1

(v(θ̂k, σ̂ j)− c(σ̂ j, θ̂k))xk j

+max
x′k j

( N

∑
k=1
k 6=i

N

∑
j=1

(v(θ̂k, σ̂ j)− c(σ̂ j, θ̂k))x′k j

)
. (7)

The compensation payments for providers t j
p are defined analogously:
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t j
p =

N

∑
i=1

N

∑
k=1
k 6= j

(v(θ̂i, σ̂k)− c(σ̂k, θ̂i))xik

−max
x′ik

( N

∑
i=1

N

∑
k=1
k 6= j

(v(θ̂i, σ̂k)− c(σ̂k, θ̂i))x′ik
)
. (8)

As stated above, the VCG mechanism is incentive compatible in common
auction theory settings, for instance, when customers and providers have unit
demand and supply and private information about their QoS. Similarly, public good
environments entail incentive compatibility of the VCG mechanism. Considering
the interdependent structure of the participants’ utilities in this work, however,
requires a reassessment of VCG’s incentive properties.

3.2.2. k-pricing
In the k-pricing scheme, the transfers are calculated based on the difference

between the valuation and provision cost of the matched participants. In general,
these transfers are given by kv(θi,σ j)+ (1− k)c(θi,σ j) for any k ∈ [0,1]. Since
each final allocation is made up of exactly two participants, k is set to 0.5. Using
this pricing scheme, both individual rationality and budget balance are satisfied by
definition. Hence, the mechanism with k-pricing is given by the allocation rule
defined in (6) with transfers

t i
c = t j

p =
1
2
(v(θi,σ j)+ c(σ j,θi)). (9)

By the Myerson-Satterthwaite-Theorem [10], incentive compatibility fails to
hold when ex post optimality is required. Therefore, the mechanism with k-pricing
cannot be incentive compatible.

Example 1. Suppose there are two customers and two providers in the market who
submit their QoS bids truthfully. As suggested in our prior work [15], customers
use a valuation function equal to v(θi,σ j) = 1+

√
θi−(θi−σ j)

2 and providers use
a cost function equal to c(σ j,θi) = σ2

j +(θi−σ j)
2. All QoS realizations θi and σ j

are uniformly distributed over the unit interval. Table 1 shows the average utilities
of customers and providers as well as the average budget achieved by the VCG
and the k-pricing mechanism. While the mechanism with k-pricing balances the
budget, the VCG pricing scheme runs a budget deficit. Notice that the difference
between welfare and budget obtained by the VCG mechanism equals the welfare
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Table 1: Average utility and budget with uniformly distributed QoS.

Pricing scheme Cust. util. Prov. util. Welfare Budget
VCG 1.3295 1.1130 4.8849 −2.6335
k-pricing 0.5629 0.5629 2.2516 0

achieved by the k-pricing mechanism. Because k-pricing does not satisfy incentive
compatibility, the VCG pricing scheme cannot be incentive compatible either. The
experimental evaluation confirms this finding.

4. Experimental evaluation

This section reports an experimental evaluation of the two pricing schemes
developed in this proposal. We describe the setup, report the results, and discuss
the findings.

4.1. Experimental setup

The experimental setup is based on the setting used in Example 1. The
participants’ QoS are described by random variables drawn from the uniform
distribution over the unit interval and the normal distribution truncated to the unit
interval with mean µ = 0.5 and standard deviation σ = 0.1.

Customers and providers are assumed to misrepresent their QoS bids. We
only consider linear misrepresentations of participants; that is, participants use a
manipulation factor to distort their true QoS. For instance, a manipulation factor
of 0.8 means that all customers reduce their true QoS by 20% and all providers
increase their true QoS by 20%. In each experiment, the number of manipulating
participants is varied as well. For example, a ratio of 0.7 denotes that 70% of
customers and 70% of providers engage in bid manipulation, while the remaining
30% report truthfully.

We study the average utility gain each participant can achieve by submitting
manipulated QoS values to the respective mechanism. The average utility gain
of a participant is calculated as the ratio between the average utility obtained by
manipulation and the average utility obtained by truthful bidding. Consequently,
an average utility gain of less than 1 implies that, on average, no participant
can increase their utility by manipulation. For values greater than 1, however,
participants have an incentive to manipulate their bid. An average utility gain of
1.12, for example, implies that each participant can increase their utility by 12%
on average if they distort their bid.
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4.2. Results

Figure 1 shows the average utility gain a single, high-quality customer can
generate if they distort their QoS in the mechanism with VCG pricing. All
other participants are assumed to report truthfully. If the market contains
four participants (N = 2) with QoS drawn from the uniform distribution, the
manipulating customer is able to increase their utility once their manipulation
factor exceeds 0.45 (i.e., their true QoS is lowered by 55%) and obtains a relative
maximum utility gain of 4.7% at a manipulation factor of 0.7 (i.e., lowered by
30%). If the participants use normally distributed QoS, the manipulating customer
can increase their utility using a manipulation factor that exceeds 0.3. Like in the
uniform case, their utility gain is maximized at a factor of 0.7, where their relative
utility gain is 7.3%.

When the market contains 200 participants (N = 100) that use uniformly
distributed QoS, the manipulating customer cannot improve their utility at all. If
the QoS is drawn from the normal distribution, however, they are able to improve
their utility at a manipulation factor that exceeds 0.75. Finally, if this customer
uses a manipulation factor of 0.9, their relative maximum utility gain appears to be
1%.

In contrast to the previous experiment, the following experiment assumes a
market on which multiple participants manipulate their bids. Figure 2 depicts
the utility gain each customer can expect on average if 10%,20%, . . . ,100% of
all participants manipulate their bids by manipulation factors between 0.7 (i.e.,
customers lower by 30%, providers raise by 30%) and 1 (i.e., no manipulation).
If all participants engage in manipulation (manipulating participants = 100%), the
average utility gain of a customer depicted in Figure 2 arrives at its maximum of
7.6% at a manipulation factor of 0.85. In other words, if all customers lower their
QoS by 15% and all providers raise their QoS by 15%, each customer can increase
their utility by 7.6% on average. If over 70% of all participants manipulate their
QoS by more than 33%, no customer can expect any utility gain (values are below
1).

Figure 3 presents the average customer utility gain for participants whose QoS
is normally distributed in the mechanism with VCG pricing. The maximum relative
utility gain a customer can achieve on average is 7.9% (peak of surface) at a
manipulation factor of 0.45 and with 60% manipulating participants. When both
the number of manipulating participants and the manipulation percentage increase
at the same time, no customer is able to improve their utility by dishonest bid
reporting.

Figures 4 and 5 depict the average utility gain of providers in the mechanism
with k-pricing assuming uniformly and normally distributed QoS. For QoS
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Figure 1: Average utility gain of a single manipulating customer (VCG).

realizations drawn from the uniform distribution (cf. Figure 4), each provider
can expect a maximum utility gain of 3.3% on average when each participant
manipulates their report by 15% (manipulation factor of 0.85) and all participants
engage in manipulation (manipulating participants = 100%). Once customers and
providers manipulate by more than 60%, however, no provider can anticipate
any average gain in utility regardless of how many participants engage in
misrepresentation.

Figure 5 shows the average provider utility gain for normally distributed QoS
in the mechanism with k-pricing. If all participants manipulate their QoS at a
manipulation factor of 0.75 (i.e., 25% manipulation), each provider can expect the
maximum average utility gain of 1.5%. For high manipulation factors (greater than
35%), providers cannot improve their utility anymore (values are below 1).

4.3. Discussion

Our experiments demonstrate the impact of bid manipulation on the utilities
of customer and providers in different market settings. Although the proposed
pricing schemes fail to provide adequate incentives for participants to report their
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Figure 2: Customer utility gain with uniform QoS and N = 10 (VCG).

QoS truthfully, the results suggest that the relative utility gain of a participant does
not exceed 8% on average in any market setting. This finding provides evidence
for the efficacy of the proposed pricing mechanisms in double-sided markets. In
the following paragraphs, we discuss the insights that can be obtained from our
research.

First, we find that the mechanism with VCG pricing does not satisfy incentive
compatibility in our model. This result is surprising because in common auction
or public good environments, the VCG generally implements the efficient outcome
[9]. As shown in the payment definitions (7) and (8), the VCG pricing scheme
is based on the participant’s impact on social surplus relative to the reports of
other participants. Because utilities are interdependent, a customer can manipulate
their perceived impact on social surplus through the cost function of their matched
provider. Hence, customers who pay for the value they bring to their matched
providers can always improve their utility by pretending to be of lower QoS (and
vice versa). Consequently, the VCG pricing scheme is not incentive compatible in
our model. Johnson obtains a similar result for matching markets in the context of
position auctions [7].
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Figure 3: Customer utility gain with normal QoS and N = 10 (VCG).

Second, high-quality customers depicted in Figure 1 achieve higher relative
utility gains in the mechanism with VCG pricing when QoS is normally distributed
(7.3%) as compared to uniform QoS (4.7%). Because the underlying normal
distribution assumes a mean of 0.5, there is more mass of QoS realizations in the
middle of the unit interval. Therefore, high-quality customers have more leeway
to manipulate their QoS as compared to the uniform distribution. However, as the
market size increases to N = 100, the incentives for customers to manipulate their
QoS decrease. In large markets, participants are faced with higher competition,
which causes a decrease in their potential utility gain.

Third, we find that by using the VCG pricing scheme, customers have an
incentive to manipulate their QoS, while providers do not. Under the mechanism
with k-pricing, however, providers can improve their utility by manipulation, while
customers cannot. In the mechanism with VCG pricing, customers have higher
utilities than providers (cf. Table 1). These utilities denote a measure for the
loss of incentive compatibility. Because the utilities of customers exceed those of
providers, the mechanism’s cost for providing adequate incentives for customers is
higher, too. Hence, the mechanism with VCG payments is vulnerable in the face
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Figure 4: Provider utility gain with uniform QoS and N = 10 (k-pricing).

of bid manipulation of customers. On the other hand, providers can increase their
utilities by strategic misrepresentation in the mechanism with k-pricing. Here, the
payments for all participants is just the middle of each valuation-cost pair. Because
the customer’s valuation is greater than the provider’s cost on average, there is
more weight on the valuation when calculating the transaction price. Therefore, if
all participants distort their bids using the same manipulation factor, the average
transaction price rises. Higher transaction prices, however, entail higher utilities
for providers, thus offering the possibility for strategic bid manipulation.

Fourth, the more participants manipulate their bids in the mechanism with
k-pricing, the higher is the average utility gain for each provider (cf. Figure 4).
Schnizler et al. report on similar findings for bids that follow the Decay distribution
[12]. They find that each participant can increase their utility by 26% when all
participants manipulate by 6%. In this work, however, the maximum utility gain of
providers is only 1.5% at a manipulation factor of 0.75 (i.e., 25%). The reason for
this difference is that our model is based on interdependent utilities of customers
and providers. As such, the mechanism must consider the fact that a customer’s
utility is maximized when their desired QoS matches the actual QoS delivered by a
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Figure 5: Provider utility gain with normal QoS and N = 10 (k-pricing).

provider (and vice versa). Therefore, participants must apply a 25% manipulation
to arrive at the relatively low average utility gain of 1.5%.

Future research might be pursued in two directions. First, it would be
interesting to study the effects of strategic bid manipulation on potential utility
gains from the perspective of a profit-maximizing intermediary. This change would
require modifying the allocation rule (6) and revisiting the payment schemes. To
what extent the interdependent structure of the participants’ utilities affects the
strategic bidding behavior in a profit-maximizing implementation remains an open
research question. Second, while we assume an equal number of customers and
providers in the current model, future research can now analyze the effects of a
varying number of customers and providers on the potential utility gain of strategic
participants. Further experimentation is required to understand the efficacy of the
mechanism for dynamic market settings.
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