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Abstract. Failure prediction is the task of forecasting whether a material system of interest will fail
at a specific point of time in the future. This task attains significance for strategies of industrial
maintenance, such as predictive maintenance. For solving the prediction task, machine learning
(ML) technology is increasingly being used, and the literature provides evidence for the
effectiveness of ML-based prediction models. However, the state of recent research and the lessons
learned are not well documented. Therefore, the objective of this review is to assess the adoption
of ML technology for failure prediction in industrial maintenance and synthesize the reported
results. We conducted a systematic search for experimental studies in peer-reviewed outlets
published from 2012 to 2020. We screened a total of 1,024 articles, of which 34 met the inclusion
criteria. We focused on understanding the datasets analyzed, the preprocessing to generate features,
and the training and evaluation of prediction models. The results reveal (1) a broad range of systems
and domains addressed, (2) the adoption of up-to-date approaches to preprocessing and training, (3)
some lack of performance evaluation mitigating the overfitting problem, and (4) considerable
heterogeneity in the reporting of experimental designs and results. We identify opportunities for
future research and suggest ways to facilitate the comparison and integration of evidence obtained
from single studies.
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1. Introduction

Failure prediction is an essential component of industrial maintenance strategies aimed at
preventing the occurrence of system failures and minimizing unplanned downtimes of equipment,
machines, and processes. Predictive maintenance relies upon accurate predictions of future failures
to devise the timely scheduling of maintenance activities [1,2]. Approaches to failure prediction
analyze current and past data representing system states, events, and operations. An increasingly
used technology for failure prediction is machine learning (ML), which enables the training of a
prediction model from time-series data, evaluation of the model’s performance, and deployment in
a productive environment [3]. The increased adoption of ML technology for failure prediction has
been facilitated by improvements of ML algorithms, implementation of these algorithms in freely
available software packages, and enhanced provision and richness of industrial data in the context
of big data analytics and stream processing platforms [4,5].

There is evidence indicating that ML-based failure prediction models are effective for a
variety of systems, including agricultural machines [6], wind turbines [ 7], aircraft components [8,9],
ICT devices [9], and even production plants [10]. Moreover, similar evidence exists both for
predictions very near to the time of failure, e.g., a few minutes [11], and very far from the time of
failure, e.g., several weeks [12]. This variety in the prediction task coincides with a wide array of
ML techniques from which researchers and practitioners can choose when developing a specific
prediction model. The techniques are concerned with the underlying ML algorithms, the
transformation of operational data into features, the training of prediction models from historic data,
and the assessment of how well the models perform.

To inform the development of effective prediction models, insights into the ML techniques
and their effects on prediction performance are necessary. However, the accumulating evidence
from previous research is not well documented. Although the adoption of ML technology for
predictive maintenance has been assessed several times, there has not been a review that focused
on failure prediction. One group of reviews examined approaches for many different tasks related
to industrial maintenance [ 13—18]. The tasks included failure detection (did a failure occur?), failure
diagnosis (why did the failure occur?), condition monitoring (what is the current condition?), failure
prediction, and prediction of other variables, such as remaining useful life and degradation. For
instance, a review by Zhang et al. [15] included thirty-three studies of which only three examined
failure prediction A review by Stetco et al. [19] considered failure detection and failure prediction.
Yet, the evidence from studies for one task cannot be compared and integrated with evidence for a
different task. For that reason, another group of reviews focused on the task of failure diagnosis but
excluded the failure prediction task [20,21].

Collectively, the insights gained from extant reviews insufficiently inform us regarding the
development of ML-based failure prediction models and their performance evaluation. Our research
addresses this important gap in the literature by focusing on the failure prediction task and

conducting a task-specific systematic review. Thus, the objectives of our research are to (1) assess



the adoption of ML technology in previous research examining failure prediction in industrial

maintenance and (2) synthesize the reported results to suggest avenues for future research.

2. Method

We conducted the systematic review in accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines [22].

2.1.  Information sources and search strategy

The literature search covered the years 2012 through 2020 and was carried out using the electronic
database Scopus and previous reviews. We chose Scopus because it has greater coverage of peer-
reviewed literature than the Web of Science [23]. The search in Scopus was performed on February
12, 2021. In addition, we considered articles from three recent systematic reviews on applications
of ML for predictive maintenance [14,15,24].

We performed the bibliographic search on the article’s title, abstract, and keywords using
search terms for three concepts: (1) ML technology was represented as ("machine learning" OR
"deep learning" OR classification OR "support vector machine" OR "random forest" OR regression
OR "neural network*), (2) failure prediction was coded as ("predictive maintenance" OR "machine
failure" OR "machine prognostics" OR "machine health" OR "condition based maintenance" OR
"machine degradation"), and (3) performance evaluation was defined as (experiment* OR metric

OR evaluat®* OR performance OR accuracy OR precision OR recall OR auc).

2.2.  Eligibility criteria and study selection

We selected articles that reported about the adoption of ML technology for predicting failures of a
material system using real-world data. We excluded literature reviews, conceptual research (e.g.,
[25,26]), case studies if they lacked performance evaluation [27,28], simulation studies using
artificial data [29,30], and approaches for failure detection [31], failure diagnosis [32], and
condition monitoring [33]. We also excluded approaches for predicting other variables than failures,
such as remaining useful life [34,35], degradation [36,37], and system performance [38,39], which
are metric variables. Further inclusion criteria were defined as follows: article published in a journal
or conference proceedings, written in English, original contribution, and full-text available.

The screening of articles was independently carried out by three reviewers (JL, JG and MR),
who used a codebook describing the eligibility and exclusion criteria. Conflicting codes were
resolved by discussing the title, abstract, and keywords of each article in detail. For the articles that
went through the screening, the full-texts were downloaded and then independently assessed by the

same reviewers. This step was followed by a discussion of all codes to resolve any inconsistency.



2.3.  Data collection process

For the articles that met all eligibility criteria, two reviewers (JG and MR) independently extracted
data using a codebook for the data items defined in Section 2.4. Data points were recorded in a
spreadsheet format and the results were discussed with the main investigator (JL) to agree upon the

final data points.

2.4.  Data items

Fig. 1 presents the conceptual model of our review by structuring the process for ML-based failure
prediction and indicating the relevant data items. We derived the process from fundamental steps

concerning the application of ML algorithms [40].
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Fig. 1. ML process and data items.

The prediction problem is forecasting whether a system will fail at a specific point of time in the
future. System can be any material artifact, such as machine or component, being operated by an
organization to fulfill some meaningful purpose (e.g., manufacturing goods, providing energy, and
offering transportation). Prediction window represents the time in advance the prediction will be
made. The process for ML-based failure prediction is organized into subprocesses for data
collection, data preprocessing, model training, and model evaluation, which we discuss in the
following paragraphs.

Data collection is concerned with the acquisition of operational data and the creation of a
dataset. Time period describes the duration for which historic data was collected. Attributes define
the number of variables that were recorded for each time step. Sampling rate represents the interval
between each time step, e.g., ten minutes. Records is the total number of entries in the dataset,
which often corresponds to a flattened table-based data structure. Failures indicate the absolute and
relative frequencies of failure states.

Data preprocessing deals with how the dataset is transformed into a representation from
which a prediction model can be learned. Specifically, preprocessing works on the dataset’s
attributes to produce so called features. Sliding window defines the time span how long historic data
will be analyzed for the prediction (e.g., one week). Feature selection is concerned with selecting

a subset of relevant attributes and can adopt different statistical techniques, such as correlation and



principal component analysis (PCA) [41]. Features are the total number of features, which will be
forwarded to the next step.

Model training is the task of learning a function that maps a set of input variables onto
output variables based on example pairs of input-output. The input variables are all the features
describing the system and the output is the failure state. ML algorithm denotes the supervised
learning algorithm for determining the mapping function, such as support vector machines (SVM)
[42], artificial neural networks (ANN) [43], and random forests (RF) [44]. To control the learning
process, hyperparameter optimization can be adopted. This optimization can be performed using
different search algorithms, such as grid search and random search [45]. Data sampling addresses
the difficulties resulting from imbalanced data [46]. A key characteristic of operational data is that
the number of non-failures is several orders of magnitude greater than the number of failures. The
data imbalance makes the prediction of failures much more difficult than the prediction of non-
failures. Whereas undersampling reduces the number of non-failures in the training dataset,
oversampling adds examples derived from the failures in the dataset.

Model evaluation assesses the performance of the prediction model. It is usually handled
by exploring how varying one or more factors, such as ML algorithm, features, and prediction
window, can enhance performance. Cross-validation is a procedure that partitions the dataset into
complementary subsets (denoted as k), conducts the training on k-1 subsets, and uses the remaining
subset (validation set) to validate the prediction model on a small set of unknown data [47]. Test
set indicates whether the prediction model was also evaluated using a separate dataset of unknown
data. Reporting form indicates the means for the presentation of results (e.g., figures, tables).

Performance metrics represent the adoption of standard metrics, such as precision and recall [48].

3. Results

3.1.  Study selection

Implementing the search strategy described above, we retrieved a total of 1,024 articles. Of these,
147 were selected for the full-text assessment, and 34 met the criteria for inclusion. The initial
agreement between reviewers was 84.5% during the screening phase and 75.5% for the full-text
assessment (all conflicts were resolved through discussions between the three reviewers involved
in each stage). Fig. 2 summarizes the selection process and states the reasons for the exclusion of
articles.
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Fig. 2. PRISMA flow diagram.

Table 1 provides an overview over the selected studies. The majority of studies have been published
in the last three years (2020: 12; 2019: 6; 2018: 6). The range of systems spanned from specific
components, such as fans, pumps, and compressors, to manufacturing plants [49]. Wind turbines,
compressors of vehicles, automatic teller machines, and hard disk drives were the only systems

examined in more than one study.



Table 1. List of studies included in qualitative synthesis (N = 34).

Study

System

Prediction window

Abu-Samah et al. [50]
Alvesetal. [11]

Bonnevay et al. [51]
Canizo et al. [52]

Chen et al. [12]

Colone et al. [53]

Dangut et al. [54]

Figueroa Barraza et al. [55]

Hamaide and Glineur [56]
Jansen et al. [57]

Kaparthi and Bumblauskas [9]
Korhoseed and Beyca [58]
Kolokas et al. [10]

Kulkarni et al. [59]
Kusiak and Verma [7]
Leahy et al. [60]

Lee etal. [61]

Lietal. [62]
Liittenberg et al. [63]
Mishra and Manjhi [64]
Nowaczyk et al. [65]
Orru et al. [66]
Pertselakis et al. [67]
Proto et al. [49]

Prytz et al. [68]
Renga et al. [69]
Rombach and Keuper [70]
Savitha et al. [8]

Silva and Capretz [71]
Susto et al. [72]

Wang et al. [73]

Wijs et al. [74]

Xiang et al. [75]
Yuetal. [76]

Thermal treatment equipment (semiconductor)
Metal stamping machine

Electrical device

Wind turbine

Air compressor of truck

Wind turbine drive-train

Aircraft component

a) Offshore natural gas treatment plant
b) Sea water injection centrifugal pump

Rotating condensor inside a synchrocyclotron
Metal machining

Hard drive disk

Sewerage treatment plant

a) Anode production plant
b) Injection molding machine

Refrigeration and cold storage system
Wind turbine

Induction generator of wind turbine
Data center

Railway network

Agricultural machine

Component of automatic teller machine
Air compressor of truck

Centrifugal pump

Carbon steel cylinder (white goods)
Manufacturing plant (white goods)
Vehicle compressor

Medium-voltage distribution network
Hard drive disk

Aircraft component

Supply fan of building

Ton implantation tool (semiconductor)
Automatic teller machine

Subsurface asset (construction)
Component of vending machine
Turbine syngas compressor

NR

5 min
upto15d

1h

up to 90 d
land4h

NR

a) 20 to 480 min
b)48 h

5d

1 row

NR

1to9h

a) 15, 20, 30, 45 min
b) 45, 450 min
7d

10 to 300 s
0.5,1,2,6,12,24 h
NR
a)7,14d,b)3m
NR

1 m

up to 50 w

lw

1d

NR

3to S0 w
1,7,30d

7d

NR

NR

1 to 85 (no unit)
<ld

NR

10d

3,6,7d

Note. d = days. h = hours. m = months. min = minutes. s = seconds. w = weeks. NR = not reported.

Prediction window also exhibited high variability, ranging from a few seconds [7] to several days
and even up to 50 weeks [65]. Yet, only a few studies give a justification for the length of the
prediction window. For instance, Prytz et al. [68] set the prediction window to enable warnings
prior to the next planned inspection. Li et al. [62] chose the length according to the time necessary
for inspection by the operator.

3.2. Data collection

Table 2 shows key characteristics of the datasets used. On average, data was recorded over a period
of 23.5 months, ranging between 29 days of data center traces for 12,500 machines [61] and eight

years of aircraft flight operations [54].



Table 2. Characteristics of the datasets used in studies (N = 34).

Study Time period Attributes Sampling rate Records Failures
Abu-Samah et al. [50] 10 m 23 Various (m to h) 6,300 82
Alvesetal. [11] NR NR 0.003 s to 5 min NR NR
Bonnevay et al. [51] 15y 4 Event-based 1,250,000 NR
Canizo et al. [52] 2y 104 10 min 1,787,040 NR
Chen et al. [12] 2y NR Event-based 160,000 200
Colone et al. [53] S5y 48 10 min NR 2042
Dangut et al. [54] 8y NR Event-based NR NR
Figueroa Barraza et al. [55] a) NR a) 10 a) 20 min a) 4,885 a) 1,332
b3y b) 16 b) NR b) 90,965 b) 26,074
Hamaide and Glineur [56] ly 8 NR 30,000,000 8
Jansen et al. [57] NR 21 NR 260,000 900
Kaparthi and Bumblauskas [9] ly >100 1d 232,662 1,381
Korhoseed and Beyca [58] 3m 6 1 min 130,956 NR
Kolokas et al. [10] a)25y a) 15 a)2to5s NR a) 604
b) 13 m b) 42 b)6t0o10s b) NR
Kulkarni et al. [59] 2m NR 5 min NR 150
Kusiak and Verma [7] 4m >100 10s NR 17,609
Leahy et al. [60] 45y 90 10 min >300,000 NR
Lee etal. [61] 29d 6 Event-based 10,400,0000 8,957
Lietal. [62] a) NR a) 55 NR NR NR
b)25m b) NR
Liittenberg et al. [63] NR NR Event-based 3,407 86
Mishra and Manjhi [64] NR 380 Event-based NR NR
Nowaczyk et al. [65] NR NR Event-based 50 to 1,500 180
Orru et al. [66] 35y NR 1h NR 4
Pertselakis et al. [67] NR NR 1d NR NR
Proto et al. [49] 183 d NR NR NR NR
Prytz et al. [68] 3y 1,250 Event-based NR NR
Renga et al. [69] 6y NR Event-based 153,094 3,901
Rombach and Keuper [70] ly 129 1d NR 1,155
Savitha et al. [8] 2m NR NR 17,104 5
Silva and Capretz [71] ly 9 NR NR NR
Susto et al. [72] NR 31 NR NR 33
Wang et al. [73] 7m NR Event-based 24,579 3,785
Wijs et al. [74] ly 27 NR 107,500 181
Xiang et al. [75] NR NR Event-based NR NR
Yuetal. [76] 9m >100 ls NR 2
Count 26 21 26 17 21

Note. d = days. m = months. min = minutes. s = seconds. y = years. NR = not reported.

All of the studies analyzed numerical data, and categorical data was present in two-thirds of the
datasets (n =23). The number of attributes ranged from 4 [51] to 1,250 [68] in two-thirds of the
studies reporting that information. The sampling rate varied between fractions of a second [11] and
one day (n =3). Eleven studies examined event-based data instead of data recorded with a fixed
sampling rate. Because of the broad range of time periods and sampling rates, the total number of
records per dataset varied greatly. The smallest dataset included 1,500 records [65], whereas four
datasets had more than one million records [51,52,56,61]. One half of the studies give no
information about the number of records. Considering that system failures are rare events, it is not
surprising that the number of failures was small in one-third of the studies reporting that
characteristic (n = 21), with seven datasets including fewer than a hundred failures. On the other

hand, eight studies examined datasets including thousands of failures. Four studies indicated the
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data imbalance by reporting the relative frequency of failures [11,55,63,66].

3.3.  Data preprocessing

Table 3 presents an overview of how the datasets were transformed into features. Most studies
stated that a sliding window was defined (n = 20). The specific approach to feature selection was
available from 17 studies, including PCA (n = 4), correlation analysis (n =4), variance analysis
(n=13), and wrapper-based approaches (n = 3). The final number of features ranged between 3 and

144 (for the 20 studies reporting that information).

Table 3. Data preprocessing in studies (N = 34).

Study Sliding window  Feature selection Features
Abu-Samah et al. [50] Yes NR NR
Alves etal. [11] NR NR NR
Bonnevay et al. [51] NR NR 39
Canizo et al. [52] NR PCA, correlation 14
Chen et al. [12] NR NR NR
Colone et al. [53] NR None (explicitly stated) NR
Dangut et al. [54] Yes NR 39
Figueroa Barraza et al. [55] Yes Statistical analysis (no details reported) a)4,b) 15
Hamaide and Glineur [56] Yes Wrapper-based, backward selection 80, 144
Jansen et al. [57] Yes NR 3
Kaparthi and Bumblauskas [9] Yes NR NR
Korhoseed and Beyca [58] Yes PCA 7
Kolokas et al. [10] Yes a) Hidden Markov model, forward selection NR

b) Forward selection
Kulkarni et al. [59] Yes NR 40
Kusiak and Verma [7] NR Wrapper genetic & best fit search, boosting tree 11
Leahy et al. [60] Yes Variance, missing values, PCA NR
Lee et al. [61] Yes NR 72
Lietal. [62] Yes a) PCA, b) Variance a) 12,b) 19
Liittenberg et al. [63] NR NR NR
Mishra and Manjhi [64] Yes NR NR
Nowaczyk et al. [65] NR NR NR
Orru et al. [66] Yes NR 8
Pertselakis et al. [67] NR NR NR
Proto et al. [49] Yes Correlation, multicollinearity test NR
Prytz et al. [68] NR Wrapper-based, Kolmogorov-Smirnov test 41020
Renga et al. [69] NR RF feature selection 13,17
Rombach and Keuper [70] Yes Correlation 6
Savitha et al. [8] NR NR NR
Silva and Capretz [71] Yes NR 50
Susto et al. [72] Yes Discard constant variables 125
Wang et al. [73] Yes Feature ranking, feature evaluation NR
Wijs et al. [74] NR Backward selection 10
Xiang et al. [75] Yes Variance, correlation, RF feature selection 100
Yuet al. [76] NR Statistical analysis (no details reported) 17
Count 20 17 20

Note. NR = not reported. PCA = principal component analysis. RF = random forests.



3.4.  Model training

Table 4 shows that the most frequently adopted algorithms were RF (n = 18), SVM (14), and ANN
(12). Fewer studies adopted decision tree (8), gradient boosting (6), k-nearest neighbor (3), and
Naive Bayes (3). A total of 15 different algorithms were tested, but six algorithms were examined

in only one study each.

Table 4. Machine learning algorithms in studies (N = 34).

Algorithm Number of studies Studies

Random forests 18 [7,9,12,49,51,52,58-61,63—-65,67,68,71,73,75]
Support vector machines 14 [7,8,56,58,60—62,66,67,70-73,75]
Artificial neural network 12 [7,8,11,12,53-55,57,61,66,67,71]
Decision tree 8 [7,9,58,60—62,65,67]

Gradient boosting 6 [7,49,58,63,73,75]

Logistic regression 4 [9,60,61,74]

k-nearest neighbor 3 [65,67,72]

Naive Bayes 3 [50,53,67]

Isolation forest 2 [10,70]

AdaBoost 1 [73]

Associative classification 1 [69]

Elliptic envelope 1 [10]

Local outliner factor 1 [70]

MapReduce-based DPCA approach 1 [76]

T-Squared 1 [76]

Table 5 gives the results for model selection. With respect to hyperparameter optimization, half of
the studies followed that approach to control the learning process, of which seven reported about
the specific search algorithm used. Three studies stated that they did not adopt hyperparameter
optimization; no information was available from the remaining studies (n = 14). To mitigate the
problems arising from imbalanced data, four studies adopted oversampling, three studies used
undersampling, and two further studies applied under- and oversampling in combination. Two
studies indicated the specific sampling ratio (1:4); hence, the failure and non-failure classes

accounted for 20% and 80% of the training set, respectively [53,57]
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Table 5. Model selection in studies (N = 34).

Study Hyperparameter optimization  Search algorithm Data sampling
Abu-Samah et al. [50] NR NR NR

Alves etal. [11] Yes NR NR

Bonnevay et al. [51] No No NR

Canizo et al. [52] Yes Grid search NR

Chen et al. [12] No NR Undersampling, Oversampling
Colone et al. [53] NR NR Undersampling (1:4)
Dangut et al. [54] NR NR Oversampling
Figueroa Barraza et al. [55] Yes Grid search NR

Hamaide and Glineur [56] Yes Grid search NR

Jansen et al. [57] Yes Grid search Undersampling (1:4)
Kaparthi and Bumblauskas [9] NR NR NR

Korhoseed and Beyca [58] Yes NR NR

Kolokas et al. [10] Yes NR NR

Kulkarni et al. [59] No NR NR

Kusiak and Verma [7] Yes NR NR

Leahy et al. [60] Yes NR Undersampling

Lee et al. [61] Yes NR NR

Lietal. [62] NR NR NR

Liittenberg et al. [63] NR NR Oversampling
Mishra and Manjhi [64] NR NR NR

Nowaczyk et al. [65] NR NR NR

Orru et al. [66] Yes Grid search Oversampling
Pertselakis et al. [67] NR NR NR

Proto et al. [49] Yes NR NR

Prytz et al. [68] NR NR Oversampling
Renga et al. [69] Yes NR NR

Rombach and Keuper [70] Yes Grid search NR

Savitha et al. [8] NR NR NR

Silva and Capretz [71] Yes Random search NR

Susto et al. [72] Yes NR NR

Wang et al. [73] NR NR NR

Wijs et al. [74] Yes NR Undersampling, Oversampling
Xiang et al. [75] NR NR NR

Yuetal. [76] NR NR NR

Count 17 7 9

Note. NR = not reported.

3.5. Model evaluation

The evaluation phase usually includes (1) the manipulation of factors, (2) assessment of

performance using operational data, and (3) reporting of results using standard metrics.

3.5.1. Factors

Table 6 shows that the majority of studies manipulated the ML algorithm used (n = 21), one-third
examined different lengths of the prediction window (n=11), and five studies each varied the
number of features and the size of the sliding window, respectively. Although performance depends
on many factors throughout the ML process, each additional factor enhances the complexity of the

analysis. Thus, it was not surprising that the sample predominantly included single-factor (n = 15)
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and two-factor studies (n = 11) but only five three-factor studies; three studies did not manipulate

any factor.

Table 6. Factors in studies (N = 34).

Factor Number of studies Studies

ML algorithm 21 [7-9,12,49,53-55,57,58,61,65-67,70-76]
Prediction window 11 [7,10,51,53,55,58,60,62,65,68,72]
Number of features 5 [49,56,68,71,73]

Sliding window 5 [9,49,60,62,73]

Oversampling 4 [54,63,68,74]

Hyperparameter 3 [11,54,57]

Dataset size 1 [65]

Rules 1 [50]

Training set 1 [52]

With respect to different ML algorithms, RF and Gradient Boosting were found to be superior in
five and three studies, respectively. However, most studies found no evidence for differences in
performance between algorithms. Again, it should be noted that the studies examined overlapping
but different sets of algorithms.

The findings for different prediction windows were largely consistent, with nine of eleven
studies showing that smaller windows enhanced performance. Regarding the number of features,
two studies reported positive effects [56,68], two studies found negative effects [49,73], and one
study reported a negative effect for RF (but not for SVM and ANN) [71]. Of the five studies that
examined different sliding windows, only the study by Proto et al. [49] found a positive effect.
Oversampling of the failure class in the training set enhanced performance in three of four studies
[63,68,74]. Different oversampling ratios were tested in two studies, of which one study showed a
positive effect when oversampling attenuated the data imbalance [68]. Results for different
hyperparameters of neural networks were provided in three studies, but no considerable effects were
observed [11,54,57]. The dataset size was manipulated in the study by Nowaczyk et al. [65]
(positive effect for a greater number of records). Moreover, no effects were found for using specific

prediction rules [50] and learning from a larger training set [52], respectively.

3.5.2. Model assessment
Perusal of Table 7 shows that 18 studies stated the specific £-fold cross-validation method used,

which partitioned the dataset into three (n = 2), four (n = 3), five (n = 9), nine (n = 1), and ten (n = 3)
complementary subsets, respectively.
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Table 7. Model assessment in studies (N = 34).

Study Cross-validation Validation set Test set 2;1; ;)trtmg forr}lable
Abu-Samah et al. [50] 4-fold Yes Yes Yes Yes
Alves etal. [11] No Yes No Yes No
Bonnevay et al. [51] No NR No Yes No
Canizo et al. [52] NR Yes No Yes Yes
Chen et al. [12] 4-fold Yes No Yes Yes
Colone et al. [53] 5-fold Yes Yes Yes Yes
Dangut et al. [54] NR Yes No No Yes
Figueroa Barraza et al. [55] 5-fold Yes Yes Yes Yes
Hamaide and Glineur [56] 9-fold Yes No Yes Yes
Jansen et al. [57] NR Yes NR Yes No
Kaparthi and Bumblauskas [9] No Yes No Yes Yes
Korhoseed and Beyca [58] 5-fold Yes No Yes Yes
Kolokas et al. [10] No Yes No Yes Yes
Kulkarni et al. [59] No No Yes Yes Yes
Kusiak and Verma [7] 10-fold Yes No Yes Yes
Leahy et al. [60] NR Yes Yes Yes Yes
Lee et al. [61] 5-fold Yes Yes No Yes
Lietal. [62] 5-fold Yes Yes Yes Yes
Liittenberg et al. [63] 4-fold Yes No Yes Yes
Mishra and Manjhi [64] NR NR No Yes No
Nowaczyk et al. [65] No Yes No Yes No
Orru et al. [66] 3-fold Yes No Yes Yes
Pertselakis et al. [67] 5-fold Yes No No Yes
Proto et al. [49] 3-fold Yes No No Yes
Prytz et al. [68] 10-fold Yes No Yes Yes
Renga et al. [69] No Yes No No No
Rombach and Keuper [70] No NR No Yes Yes
Savitha et al. [8] 5-fold Yes No No Yes
Silva and Capretz [71] 5-fold Yes No No Yes
Susto et al. [72] NR Yes No Yes Yes
Wang et al. [73] No Yes No Yes Yes
Wijs et al. [74] 5-fold Yes No No Yes
Xiang et al. [75] 10-fold Yes No Yes Yes
Yuetal. [76] NR Yes No Yes Yes
Count 18 30 7 26 28

Note. NR = Not reported.

Every fifth study evaluated the prediction model separately on unknown data (test set, n = 7).

Overall, the results were reported using various types of charts (z = 26) and tables (n = 28).

3.5.3. Performance metrics

Table 8 summarizes the adoption of performance metrics and gives the quantitative results. For
each study and metric, we coded the best performance across all experimental conditions but we
did not include the specific condition.

The accuracy (ACC) metric, which is defined as the share of correct predictions among all
predictions, ranged from 73.0 to 99.0% (n = 16). Nevertheless, it should be noted that ACC is an
inappropriate measure for imbalanced classification problems: An extremely high ACC can be
achieved by making correct predictions of the majority class (non-failure), even if the model

performs extremely worse in predicting the minority class (failure). Therefore, accuracy needs to
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be differentiated for the minority and majority classes, for which precision, recall, and specificity,
among other metrics, are available [48].

Precision (PRE) represents the share of correct predictions among all failure predictions,
and it ranged from 34.0 to 96.0% (n = 20). In general, precision should be high, because false failure
predictions may cause unnecessary time and effort for verifying the current system condition. This
expectation was not supported, with only 11 studies reporting a PRE greater than 80%.

Table 8. Performance metrics and percentages reported in studies (N = 34).

Study ACC PRE REC SPE FSC AUC Other
Abu-Samah et al. [50] X
Alves etal. [11] 99.0

Bonnevay et al. [51] 89.0 X
Canizo et al. [52] 82.0 92.3 60.6

Chen et al. [12] 86.0 83.0 73.0 78.0 91.0

Colone et al. [53] 94.7

Dangut et al. [54] 88.0 66.0 X
Figueroa Barraza et al. [55] 90.8 90.8 89.0 99.5

Hamaide and Glineur [56] 96.0 78.0 X
Jansen et al. [57] 82.0 55.0 83.0 66.0

Kaparthi and Bumblauskas [9] 79.4

Korhoseed and Beyca [58] 92.3 92.6 89.5 92.8

Kolokas et al. [10] 98.3 73.4 74.4 99.1 73.9 X
Kulkarni et al. [59] 89.0 46.0

Kusiak and Verma [7] 99.5 X
Leahy et al. [60] 46.0 51.0

Lee etal. [61] 72.9 79.5 99.1 87.8 X
Lietal. [62] 99.8

Liittenberg et al. [63] 89.4 88.4 92.1 88.1 97.1

Mishra and Manjhi [64] 65.0 80.0

Nowaczyk et al. [65] 46.0

Orru et al. [66] 98.2 71.1 27.7 99.7 399 X
Pertselakis et al. [67] 95.0

Proto et al. [49] 84.3 83.0 82.2

Prytz et al. [68] 73.0 23.0 X
Renga et al. [69] 34.0 54.0

Rombach and Keuper [70] 77.9 96.2

Savitha et al. [8] 98.7 100.0

Silva and Capretz [71] 98.1 96.0 96.0 95.9

Susto et al. [72] 98.5 69.3 100.0

Wang et al. [73] 82.2 49.3 81.8

Wijs et al. [74] 58.0 100.0 74.0 X
Xiang et al. [75] 88.1 86.5 76.2 81.0

Yuetal. [76] X
Count 16 20 24 8 11 6 13

Note. ACC = accuracy. AUC = area under the curve. FSC = F-score. PRE = precision. REC = recall. SPE = specificity.

Recall (REC) is defined as the proportion of failures that were correctly predicted. REC should be
high to avoid running into unexpected failures and downtimes. It was larger than 80% in 11 of 24
relevant studies; hence, these studies overlooked less than every fifth failure. One-third of the

relevant studies missed less than every tenth failure (REC larger than 90%; n = 8). In eight studies,
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recall was complemented with specificity (SPE), defined as the proportion of non-failures that were
correctly predicted. Due to the extreme data imbalance, predicting the non-failures was highly
effective in five studies (> 99%).

The performance of a prediction model can collectively be measured using the
F-score, which is calculated from PRE and REC. For imbalanced datasets, achieving higher
precision often comes at the cost of lower recall, and vice versa. In this sense, the
F-score metric balances the different information conveyed by PRE and REC as class-specific
metrics. Surprisingly, only one-third of the studies reported the F-score (n = 11). In five studies, F-
score was greater than 80%. Nine studies provided F-score, PRE, and REC to paint a comprehensive
picture of performance. Six studies reported results for Area Under the Curve (AUC), which
measures the ability of a classifier to distinguish between the minority and majority classes. Using
standard cut-offs [77], one classifier can be considered as acceptable (AUC larger than 0.7) [74],
one classifier as excellent (> 0.8) [73], and four classifiers as outstanding (> 0.9) [12,53,58,63].

4. Discussion

The systematic review of ML technology for failure prediction assessed the adoption of specific
ML techniques in previous research and their role in developing effective prediction models. In this
section, we discuss the principal findings and implications for future research as well as the

limitations of our review.

4.1.  Principal findings and implications

Collectively, the studies included in this review address failure prediction for a highly diverse set
of material systems in various domains, with very few studies examining similar systems. This
diversity also mirrors in the prediction windows used (i.e., from a few seconds to several months),
because different systems require different minimum times to perform maintenance actions. On one
hand, these results demonstrate the applicability of ML technology for failure prediction in manifold
contexts. On the other hand, the variation of application contexts has resulted in a large but

fragmented body of knowledge.

4.1.1. Data collection

With respect to the datasets analyzed, our review indicates the practice of collecting data over a
long period of time, usually many months or several years. Because learning is only possible if
many example pairs of input-output for the same failure type are present, the time period increases
for less frequent failures and greater data imbalance. Surprisingly, 38 percent of the studies did not
report the number of failures, although this information is essential for determining whether
learning a prediction model is feasible at all. To make matters worse, four studies used datasets that
included less than ten failures [8,56,66,76]; such small sizes of the minority class make estimates

of the precision for the minority class impossible, and thus evidence for the performance of the
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trained prediction model cannot be derived from these studies.

As in any empirical research, a detailed specification of the dataset is necessary to assess
the generalizability of the results. Our review highlights that a relevant subset of studies do not give
information about attributes, sampling rates, and records, while this information exhibits
considerable variation in the remaining studies. Examples of detailed reporting are the study by
Figueroa Barraza [55], which provides definitions of all attributes and their units of measurement,
and the study by Wang et al. [ 73], which reports the number of records differentiated for the training
and evaluation phases. Only one study manipulated the dataset size, but its prediction performance
was very low, with the F-Score being smaller than 0.35 [65]. Opportunities exist to further examine
the role of the dataset size, which can then help ascertain the amount of data that must be collected
for a specific context.

Although our review assessed the reported datasets for abstract data characteristics (e.g.,
number of attributes, data types), the range of data available to failure prediction has broadened by
also including data from service processes and human interactions with systems [78]. In this social
manufacturing context, ML techniques need to be adapted that allow recognizing the knowledge

present in very different data attributes (granular computing perspective) [79].

4.1.2. Data preprocessing

Regarding the preprocessing of data, feature selection is an important part of ML technology and
the specific techniques used can have substantial effects by focusing on relevant attributes and
reducing noise in the data [80]. Our results reveal that the adoption of feature selection is rather
low, with no information about feature selection being available from one half of the studies. The
other half of the studies adopted a wide array of techniques, demonstrating awareness of the design
alternatives available from the literature. Indeed, four of the five studies that tested different
techniques found positive effects on prediction performance. Given this evidence, the low level of
adoption points to a missed opportunity in ML-based failure prediction. Future research should
examine the role of feature selection by contrasting different techniques and varying the number of
features. Moreover, researchers are advised to clearly state whether feature selection has been
applied and eventually specify the techniques used. For instance, the study by Prytz et al. [68] both
provides a detailed description of seven different techniques, including the rationale for their
adoption, and an evaluation using a three-factor experiment. An alternative to feature selection is
feature learning, which automatically learns features using unsupervised ML algorithms. Recent
research has shown that feature learning is effective for fault detection [81], fault diagnosis [82]
and degradation stage classification [83]. It would be interesting to empirically test whether feature

learning can improve failure prediction.

4.1.3. Model training

With respect to the training of prediction models, we found the highest adoption rates for RF, SVM,
ANN, and decision tree. This observation corroborates results of previous reviews examining
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related tasks in industrial maintenance [14,15]. The prevalence of these algorithms is coincident
with two-thirds of studies comparing the performance of different algorithms. However, few studies
observed performance differences (except for RF and gradient boosting). Collectively, there is no
evidence for one group of algorithms being superior to another group. This finding also holds true
for hyperparameter optimization, which has been adopted in one half of the studies but evaluated
in only three studies.

The training of prediction models is made difficult by imbalanced data, with the failure
class representing a small fraction of all system states. Learning from imbalanced data is an active
field of ML research, and differentiated sampling techniques have been developed and
experimentally evaluated [84,85], including task-specific oversampling techniques for fault
detection in industrial maintenance [86]. Despite the design knowledge from this field, only one-
fourth of studies adopted any sampling technique. It is noteworthy that four studies tested the impact
of oversampling, and three of these studies found positive effects on performance. We believe that
this evidence provides further support to the importance of data sampling. For adopting data
sampling, we recommend to report the specific sampling rate along with the resulting number of
failures and non-failures in the training set (a good example is the reporting by Wijs et al. [74]). As
data sampling originates from classification tasks, a potentially useful alternative is data

augmentation for for time-series data and forecasting tasks [87].

4.1.4. Model evaluation

Insights into the design of effective prediction models can be obtained from rigorous evaluations of
the most relevant design alternatives. However, the sheer number of factors that potentially affect
performance make the evaluation challenging. Our review substantiates this challenge through
identifying nine groups of factors (Table 6). Nevertheless, the variety of data collection,
preprocessing, and training undermines the ability to compare results for specific factors between
studies.

A standard evaluation technique is cross-validation, which also allows detecting the
overfitting problem in learned prediction models. Overfitting characterizes a model that fits well to
the training data but actually fails to learn the dataset features well, and thus performs worse on
unknown data. In other words, when deployed in a productive system, the performance in predicting
failures will be much lower, and the model might become useless. Our review uncovers that the
adoption rate of cross-validation in the failure prediction literature is rather low at 53%. Therefore,
it is likely that some of the proposed models suffer from overfitting.

An important assumption of cross-validation is that the prediction performance for each
fold should be very similar. This assumption can easily be verified by not only reporting the mean
value calculated for all folds but presenting further distribution parameters (e.g., standard deviation,
minimum, maximum), and reporting the specific results for each fold, as demonstrated in the study
by Xiang et al. [75].

Model evaluation using a separate dataset of unknown data could be regarded as the “gold

standard”. Although seven studies chose that approach, its implementation will often be overly
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difficult or not possible at all. The additional effort required for collecting operational data could
exceed the resources and time available. Specifically, the longer time needed might delay the
intended deployment of the model. Against this backdrop, cross-validation as a technique that
systematically derives unknown data from the training set and integrates it in the evaluation takes
on even greater importance.

With respect to the adoption of standard performance metrics, our review reveals that many
studies relied upon metrics that are either inadequate for imbalanced data (accuracy, specificity) or
only represent one facet of prediction performance (e.g., recall). On the other end of the spectrum,
nine of the studies comprehensively assessed performance by reporting precision, recall, and F-
score. Considering that seven of the nine studies adopted cross-validation of which one study lacked
a sufficient number of failures, six studies ranked highest in the quality of the evaluation
[12,49,55,61,71,75]. For this set of studies, prediction performance was rather high as signified by
the lower bounds and upper bounds for precision [0.729; 0.960], recall [0.730; 0.960] and F-score
[0.810; 0.995]. Although a quantitative synthesis of results is beyond the scope of our review, these
indicative results demonstrate the usefulness of adopting comprehensive metrics specific to the
context of imbalanced data. Therefore, we suggest to: (1) perform cross-validation with the number
of folds adjusted to the dataset size; (2) abandon the inadequate and misleading metrics accuracy
and specificity; and (3) report precision, recall and F-score for all experimental conditions.
Moreover, complementing the composite metric F-score with AUC enables a context-indepenent

interpretation using standard cut-offs.

4.2. Limitations

The results of our review should be viewed in light of the following limitations. The first limitation
is the heterogeneity of the included studies. Although we defined strict eligibility criteria, the studies
were very heterogeneous with regard to data collection, preprocessing, training, and evaluation;
hence, a direct comparison of outcomes using performance metrics was not possible. Second, the
included studies exhibited rather few common reporting practices, which made the data extraction
and synthesis intricate. Data extraction was further undermined by some studies that reported charts
but no exact quantitative results. Given these challenges, we ensured the validity of the extracted
data through using two independent reviewers and resolving inconsistencies by discussion with a
third reviewer. Third, the data items of our review did not include quality criteria, such as
justification of conducting the study, generalizability of the dataset used, and validity of
conclusions. We applied a single proxy measure for quality (published in a refereed journal or

conference proceedings), whereas all data items were specific to the adoption of ML technology.

5. Conclusion

This systematic review provides insights into the richness and depth of the published research

adopting ML technology for failure prediction in industrial maintenance. The review’s conceptual
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model — organized into data collection, data preprocessing, model training, and model evaluation —
allowed us to assess the level of adoption and identify important contributions as well as
opportunities for future research. The review results reveal that barriers towards the accumulation
of knowledge about the development of ML-based failure prediction models and their performance
evaluation continue to exist. As our review of thirty-four studies shows, diversity of ML designs is
coincident with considerable heterogeneity in the reporting. We suggest specific recommendations
for future research including reporting items that can enhance uniformity and comparability of
studies. The new practices will assist in interpreting and comparing results obtained from single
studies, and pave the road for improved synthesis of quantitative evidence. Overall, we believe that
these efforts will help in enhancing knowledge about how failure prediction can benefit from

advances in ML technology.
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