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Abstract. Failure prediction is the task of forecasting whether a material system of interest will fail 

at a specific point of time in the future. This task attains significance for strategies of industrial 

maintenance, such as predictive maintenance. For solving the prediction task, machine learning 

(ML) technology is increasingly being used, and the literature provides evidence for the 

effectiveness of ML-based prediction models. However, the state of recent research and the lessons 

learned are not well documented. Therefore, the objective of this review is to assess the adoption 

of ML technology for failure prediction in industrial maintenance and synthesize the reported 

results. We conducted a systematic search for experimental studies in peer-reviewed outlets 

published from 2012 to 2020. We screened a total of 1,024 articles, of which 34 met the inclusion 

criteria. We focused on understanding the datasets analyzed, the preprocessing to generate features, 

and the training and evaluation of prediction models. The results reveal (1) a broad range of systems 

and domains addressed, (2) the adoption of up-to-date approaches to preprocessing and training, (3) 

some lack of performance evaluation mitigating the overfitting problem, and (4) considerable 

heterogeneity in the reporting of experimental designs and results. We identify opportunities for 

future research and suggest ways to facilitate the comparison and integration of evidence obtained 

from single studies. 
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1. Introduction 

Failure prediction is an essential component of industrial maintenance strategies aimed at 

preventing the occurrence of system failures and minimizing unplanned downtimes of equipment, 

machines, and processes. Predictive maintenance relies upon accurate predictions of future failures 

to devise the timely scheduling of maintenance activities [1,2]. Approaches to failure prediction 

analyze current and past data representing system states, events, and operations. An increasingly 

used technology for failure prediction is machine learning (ML), which enables the training of a 

prediction model from time-series data, evaluation of the model’s performance, and deployment in 

a productive environment [3]. The increased adoption of ML technology for failure prediction has 

been facilitated by improvements of ML algorithms, implementation of these algorithms in freely 

available software packages, and enhanced provision and richness of industrial data in the context 

of big data analytics and stream processing platforms [4,5]. 

There is evidence indicating that ML-based failure prediction models are effective for a 

variety of systems, including agricultural machines [6], wind turbines [7], aircraft components [8,9], 

ICT devices [9], and even production plants [10]. Moreover, similar evidence exists both for 

predictions very near to the time of failure, e.g., a few minutes [11], and very far from the time of 

failure, e.g., several weeks [12]. This variety in the prediction task coincides with a wide array of 

ML techniques from which researchers and practitioners can choose when developing a specific 

prediction model. The techniques are concerned with the underlying ML algorithms, the 

transformation of operational data into features, the training of prediction models from historic data, 

and the assessment of how well the models perform. 

To inform the development of effective prediction models, insights into the ML techniques 

and their effects on prediction performance are necessary. However, the accumulating evidence 

from previous research is not well documented. Although the adoption of ML technology for 

predictive maintenance has been assessed several times, there has not been a review that focused 

on failure prediction. One group of reviews examined approaches for many different tasks related 

to industrial maintenance [13–18]. The tasks included failure detection (did a failure occur?), failure 

diagnosis (why did the failure occur?), condition monitoring (what is the current condition?), failure 

prediction, and prediction of other variables, such as remaining useful life and degradation. For 

instance, a review by Zhang et al. [15] included thirty-three studies of which only three examined 

failure prediction A review by Stetco et al. [19] considered failure detection and failure prediction. 

Yet, the evidence from studies for one task cannot be compared and integrated with evidence for a 

different task. For that reason, another group of reviews focused on the task of failure diagnosis but 

excluded the failure prediction task [20,21]. 

Collectively, the insights gained from extant reviews insufficiently inform us regarding the 

development of ML-based failure prediction models and their performance evaluation. Our research 

addresses this important gap in the literature by focusing on the failure prediction task and 

conducting a task-specific systematic review. Thus, the objectives of our research are to (1) assess 
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the adoption of ML technology in previous research examining failure prediction in industrial 

maintenance and (2) synthesize the reported results to suggest avenues for future research. 

2. Method 

We conducted the systematic review in accordance with the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) guidelines [22]. 

2.1. Information sources and search strategy 

The literature search covered the years 2012 through 2020 and was carried out using the electronic 

database Scopus and previous reviews. We chose Scopus because it has greater coverage of peer-

reviewed literature than the Web of Science [23]. The search in Scopus was performed on February 

12, 2021. In addition, we considered articles from three recent systematic reviews on applications 

of ML for predictive maintenance [14,15,24]. 

We performed the bibliographic search on the article’s title, abstract, and keywords using 

search terms for three concepts: (1) ML technology was represented as ("machine learning" OR 

"deep learning" OR classification OR "support vector machine" OR "random forest" OR regression 

OR "neural network*), (2) failure prediction was coded as ("predictive maintenance" OR "machine 

failure" OR "machine prognostics" OR "machine health" OR "condition based maintenance" OR 

"machine degradation"), and (3) performance evaluation was defined as (experiment* OR metric 

OR evaluat* OR performance OR accuracy OR precision OR recall OR auc). 

2.2. Eligibility criteria and study selection 

We selected articles that reported about the adoption of ML technology for predicting failures of a 

material system using real-world data. We excluded literature reviews, conceptual research (e.g., 

[25,26]), case studies if they lacked performance evaluation [27,28], simulation studies using 

artificial data [29,30], and approaches for failure detection [31], failure diagnosis [32], and 

condition monitoring [33]. We also excluded approaches for predicting other variables than failures, 

such as remaining useful life [34,35], degradation [36,37], and system performance [38,39], which 

are metric variables. Further inclusion criteria were defined as follows: article published in a journal 

or conference proceedings, written in English, original contribution, and full-text available. 

The screening of articles was independently carried out by three reviewers (JL, JG and MR), 

who used a codebook describing the eligibility and exclusion criteria. Conflicting codes were 

resolved by discussing the title, abstract, and keywords of each article in detail. For the articles that 

went through the screening, the full-texts were downloaded and then independently assessed by the 

same reviewers. This step was followed by a discussion of all codes to resolve any inconsistency. 
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2.3. Data collection process 

For the articles that met all eligibility criteria, two reviewers (JG and MR) independently extracted 

data using a codebook for the data items defined in Section 2.4. Data points were recorded in a 

spreadsheet format and the results were discussed with the main investigator (JL) to agree upon the 

final data points. 

2.4. Data items 

Fig. 1 presents the conceptual model of our review by structuring the process for ML-based failure 

prediction and indicating the relevant data items. We derived the process from fundamental steps 

concerning the application of ML algorithms [40]. 

 

Fig. 1. ML process and data items. 

The prediction problem is forecasting whether a system will fail at a specific point of time in the 

future. System can be any material artifact, such as machine or component, being operated by an 

organization to fulfill some meaningful purpose (e.g., manufacturing goods, providing energy, and 

offering transportation). Prediction window represents the time in advance the prediction will be 

made. The process for ML-based failure prediction is organized into subprocesses for data 

collection, data preprocessing, model training, and model evaluation, which we discuss in the 

following paragraphs. 

Data collection is concerned with the acquisition of operational data and the creation of a 

dataset. Time period describes the duration for which historic data was collected. Attributes define 

the number of variables that were recorded for each time step. Sampling rate represents the interval 

between each time step, e.g., ten minutes. Records is the total number of entries in the dataset, 

which often corresponds to a flattened table-based data structure. Failures indicate the absolute and 

relative frequencies of failure states. 

Data preprocessing deals with how the dataset is transformed into a representation from 

which a prediction model can be learned. Specifically, preprocessing works on the dataset’s 

attributes to produce so called features. Sliding window defines the time span how long historic data 

will be analyzed for the prediction (e.g., one week). Feature selection is concerned with selecting 

a subset of relevant attributes and can adopt different statistical techniques, such as correlation and 
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principal component analysis (PCA) [41]. Features are the total number of features, which will be 

forwarded to the next step. 

Model training is the task of learning a function that maps a set of input variables onto 

output variables based on example pairs of input-output. The input variables are all the features 

describing the system and the output is the failure state. ML algorithm denotes the supervised 

learning algorithm for determining the mapping function, such as support vector machines (SVM) 

[42], artificial neural networks (ANN) [43], and random forests (RF) [44]. To control the learning 

process, hyperparameter optimization can be adopted. This optimization can be performed using 

different search algorithms, such as grid search and random search [45]. Data sampling addresses 

the difficulties resulting from imbalanced data [46]. A key characteristic of operational data is that 

the number of non-failures is several orders of magnitude greater than the number of failures. The 

data imbalance makes the prediction of failures much more difficult than the prediction of non-

failures. Whereas undersampling reduces the number of non-failures in the training dataset, 

oversampling adds examples derived from the failures in the dataset. 

Model evaluation assesses the performance of the prediction model. It is usually handled 

by exploring how varying one or more factors, such as ML algorithm, features, and prediction 

window, can enhance performance. Cross-validation is a procedure that partitions the dataset into 

complementary subsets (denoted as k), conducts the training on k-1 subsets, and uses the remaining 

subset (validation set) to validate the prediction model on a small set of unknown data [47]. Test 

set indicates whether the prediction model was also evaluated using a separate dataset of unknown 

data. Reporting form indicates the means for the presentation of results (e.g., figures, tables). 

Performance metrics represent the adoption of standard metrics, such as precision and recall [48]. 

3. Results 

3.1. Study selection 

Implementing the search strategy described above, we retrieved a total of 1,024 articles. Of these, 

147 were selected for the full-text assessment, and 34 met the criteria for inclusion. The initial 

agreement between reviewers was 84.5% during the screening phase and 75.5% for the full-text 

assessment (all conflicts were resolved through discussions between the three reviewers involved 

in each stage). Fig. 2 summarizes the selection process and states the reasons for the exclusion of 

articles. 
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Fig. 2. PRISMA flow diagram. 

Table 1 provides an overview over the selected studies. The majority of studies have been published 

in the last three years (2020: 12; 2019: 6; 2018: 6). The range of systems spanned from specific 

components, such as fans, pumps, and compressors, to manufacturing plants [49]. Wind turbines, 

compressors of vehicles, automatic teller machines, and hard disk drives were the only systems 

examined in more than one study. 
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Table 1. List of studies included in qualitative synthesis (N = 34). 

Study System Prediction window 

Abu-Samah et al. [50] Thermal treatment equipment (semiconductor) NR 
Alves et al. [11] Metal stamping machine 5 min 

Bonnevay et al. [51] Electrical device up to 15 d 
Canizo et al. [52] Wind turbine 1 h 
Chen et al. [12] Air compressor of truck up to 90 d 
Colone et al. [53] Wind turbine drive-train  1 and 4 h 

Dangut et al. [54] Aircraft component NR 
Figueroa Barraza et al. [55] a) Offshore natural gas treatment plant 

b) Sea water injection centrifugal pump 
a) 20 to 480 min 
b) 48 h 

Hamaide and Glineur [56] Rotating condensor inside a synchrocyclotron 5 d 
Jansen et al. [57] Metal machining 1 row 
Kaparthi and Bumblauskas [9] Hard drive disk NR 

Korhoseed and Beyca [58] Sewerage treatment plant 1 to 9 h 
Kolokas et al. [10] a) Anode production plant 

b) Injection molding machine 
a) 15, 20, 30, 45 min 
b) 45, 450 min 

Kulkarni et al. [59] Refrigeration and cold storage system 7 d 
Kusiak and Verma [7] Wind turbine  10 to 300 s 

Leahy et al. [60] Induction generator of wind turbine 0.5, 1, 2, 6, 12, 24 h 
Lee et al. [61] Data center NR 
Li et al. [62] Railway network a) 7, 14 d, b) 3 m 
Lüttenberg et al. [63] Agricultural machine NR 
Mishra and Manjhi [64] Component of automatic teller machine 1 m 

Nowaczyk et al. [65] Air compressor of truck up to 50 w 
Orrù et al. [66] Centrifugal pump 1 w 
Pertselakis et al. [67] Carbon steel cylinder (white goods) 1 d 
Proto et al. [49] Manufacturing plant (white goods) NR 

Prytz et al. [68] Vehicle compressor 3 to 50 w 
Renga et al. [69] Medium-voltage distribution network 1, 7, 30 d 
Rombach and Keuper [70] Hard drive disk 7 d 
Savitha et al. [8] Aircraft component NR 

Silva and Capretz [71] Supply fan of building NR 
Susto et al. [72] Ion implantation tool (semiconductor) 1 to 85 (no unit) 
Wang et al. [73] Automatic teller machine <1 d 
Wijs et al. [74] Subsurface asset (construction) NR 

Xiang et al. [75] Component of vending machine 10 d 
Yu et al. [76] Turbine syngas compressor 3, 6, 7 d 

Note. d = days. h = hours. m = months. min = minutes. s = seconds. w = weeks. NR = not reported. 

Prediction window also exhibited high variability, ranging from a few seconds [7] to several days 

and even up to 50 weeks [65]. Yet, only a few studies give a justification for the length of the 

prediction window. For instance, Prytz et al. [68] set the prediction window to enable warnings 

prior to the next planned inspection. Li et al. [62] chose the length according to the time necessary 

for inspection by the operator. 

3.2. Data collection 

Table 2 shows key characteristics of the datasets used. On average, data was recorded over a period 

of 23.5 months, ranging between 29 days of data center traces for 12,500 machines [61] and eight 

years of aircraft flight operations [54].  
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Table 2. Characteristics of the datasets used in studies (N = 34). 

Study Time period Attributes Sampling rate Records Failures 

Abu-Samah et al. [50] 10 m 23 Various (m to h) 6,300 82 
Alves et al. [11] NR NR 0.003 s to 5 min NR NR 
Bonnevay et al. [51] 1.5 y 4 Event-based 1,250,000 NR 

Canizo et al. [52] 2 y 104 10 min 1,787,040 NR 
Chen et al. [12] 2 y NR Event-based 160,000 200 
Colone et al. [53] 5 y 48 10 min NR 2042 
Dangut et al. [54] 8 y NR Event-based NR NR 
Figueroa Barraza et al. [55] a) NR 

b) 3 y 
a) 10 
b) 16 

a) 20 min 
b) NR 

a) 4,885 
b) 90,965 

a) 1,332 
b) 26,074 

Hamaide and Glineur [56] 1 y 8 NR 30,000,000 8 

Jansen et al. [57] NR 21 NR 260,000 900 
Kaparthi and Bumblauskas [9] 1 y >100 1 d 232,662 1,381 
Korhoseed and Beyca [58] 3 m 6 1 min 130,956 NR 
Kolokas et al. [10] a) 2.5 y 

b) 13 m 
a) 15 
b) 42 

a) 2 to 5 s 
b) 6 to 10 s 

NR a) 604 
b) NR 

Kulkarni et al. [59] 2 m NR 5 min NR 150 
Kusiak and Verma [7] 4 m >100  10 s NR 17,609 

Leahy et al. [60] 4.5 y 90 10 min >300,000 NR 
Lee et al. [61] 29 d 6 Event-based 10,400,0000 8,957 
Li et al. [62] a) NR 

b) 25 m 
a) 55 
b) NR 

NR NR NR 

Lüttenberg et al. [63] NR NR Event-based 3,407 86 
Mishra and Manjhi [64] NR 380 Event-based NR NR 
Nowaczyk et al. [65] NR NR Event-based 50 to 1,500 180 

Orrù et al. [66] 3.5 y NR 1 h NR 4 
Pertselakis et al. [67] NR NR 1 d NR NR 
Proto et al. [49] 183 d NR NR NR NR 
Prytz et al. [68] 3 y 1,250 Event-based NR NR 
Renga et al. [69] 6 y NR Event-based 153,094 3,901 

Rombach and Keuper [70] 1 y 129 1 d NR 1,155 
Savitha et al. [8] 2 m NR NR 17,104 5 
Silva and Capretz [71] 1 y 9 NR NR NR 
Susto et al. [72] NR 31 NR NR 33 

Wang et al. [73] 7 m NR Event-based 24,579 3,785 
Wijs et al. [74] 1 y 27 NR 107,500 181 
Xiang et al. [75] NR NR Event-based NR NR 
Yu et al. [76] 9 m >100 1 s NR 2 

Count 26 21 26 17 21 

Note. d = days. m = months. min = minutes. s = seconds. y = years. NR = not reported. 

All of the studies analyzed numerical data, and categorical data was present in two-thirds of the 

datasets (n = 23). The number of attributes ranged from 4 [51] to 1,250 [68] in two-thirds of the 

studies reporting that information. The sampling rate varied between fractions of a second [11] and 

one day (n = 3). Eleven studies examined event-based data instead of data recorded with a fixed 

sampling rate. Because of the broad range of time periods and sampling rates, the total number of 

records per dataset varied greatly. The smallest dataset included 1,500 records [65], whereas four 

datasets had more than one million records [51,52,56,61]. One half of the studies give no 

information about the number of records. Considering that system failures are rare events, it is not 

surprising that the number of failures was small in one-third of the studies reporting that 

characteristic (n = 21), with seven datasets including fewer than a hundred failures. On the other 

hand, eight studies examined datasets including thousands of failures. Four studies indicated the 
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data imbalance by reporting the relative frequency of failures [11,55,63,66]. 

3.3. Data preprocessing 

Table 3 presents an overview of how the datasets were transformed into features. Most studies 

stated that a sliding window was defined (n = 20). The specific approach to feature selection was 

available from 17 studies, including PCA (n = 4), correlation analysis (n = 4), variance analysis 

(n = 3), and wrapper-based approaches (n = 3). The final number of features ranged between 3 and 

144 (for the 20 studies reporting that information). 

Table 3. Data preprocessing in studies (N = 34). 

Study Sliding window Feature selection Features 

Abu-Samah et al. [50] Yes NR NR 
Alves et al. [11] NR NR NR 
Bonnevay et al. [51] NR NR 39 

Canizo et al. [52] NR PCA, correlation 14 
Chen et al. [12] NR NR NR 
Colone et al. [53] NR None (explicitly stated) NR 
Dangut et al. [54] Yes NR 39 

Figueroa Barraza et al. [55] Yes Statistical analysis (no details reported) a) 4, b) 15 
Hamaide and Glineur [56] Yes Wrapper-based, backward selection 80, 144 
Jansen et al. [57] Yes NR 3 
Kaparthi and Bumblauskas [9] Yes NR NR 

Korhoseed and Beyca [58] Yes PCA 7 
Kolokas et al. [10] Yes a) Hidden Markov model, forward selection 

b) Forward selection 
NR 

Kulkarni et al. [59] Yes NR 40 
Kusiak and Verma [7] NR Wrapper genetic & best fit search, boosting tree 11 
Leahy et al. [60] Yes Variance, missing values, PCA NR 

Lee et al. [61] Yes NR 72 
Li et al. [62] Yes a) PCA, b) Variance a) 12, b) 19 
Lüttenberg et al. [63] NR NR NR 
Mishra and Manjhi [64] Yes NR NR 

Nowaczyk et al. [65] NR NR NR 
Orrù et al. [66] Yes NR 8 
Pertselakis et al. [67] NR NR NR 
Proto et al. [49] Yes Correlation, multicollinearity test NR 
Prytz et al. [68] NR Wrapper-based, Kolmogorov-Smirnov test 4 to 20 

Renga et al. [69] NR RF feature selection 13, 17 
Rombach and Keuper [70] Yes Correlation 6 
Savitha et al. [8] NR NR NR 
Silva and Capretz [71] Yes NR 50 

Susto et al. [72] Yes Discard constant variables 125 
Wang et al. [73] Yes Feature ranking, feature evaluation NR 
Wijs et al. [74] NR Backward selection 10 
Xiang et al. [75] Yes Variance, correlation, RF feature selection 100 

Yu et al. [76] NR Statistical analysis (no details reported) 17 

Count 20 17 20 

Note. NR = not reported. PCA = principal component analysis. RF = random forests. 
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3.4. Model training 

Table 4 shows that the most frequently adopted algorithms were RF (n = 18), SVM (14), and ANN 

(12). Fewer studies adopted decision tree (8), gradient boosting (6), k-nearest neighbor (3), and 

Naïve Bayes (3). A total of 15 different algorithms were tested, but six algorithms were examined 

in only one study each. 

Table 4. Machine learning algorithms in studies (N = 34). 

Algorithm Number of studies Studies 

Random forests 18 [7,9,12,49,51,52,58–61,63–65,67,68,71,73,75] 

Support vector machines 14 [7,8,56,58,60–62,66,67,70–73,75] 
Artificial neural network 12 [7,8,11,12,53–55,57,61,66,67,71] 
Decision tree 8 [7,9,58,60–62,65,67] 
Gradient boosting 6 [7,49,58,63,73,75] 

Logistic regression 4 [9,60,61,74] 
k-nearest neighbor 3 [65,67,72] 
Naïve Bayes 3 [50,53,67] 
Isolation forest 2 [10,70] 

AdaBoost 1 [73] 
Associative classification 1 [69] 
Elliptic envelope 1 [10] 
Local outliner factor 1 [70] 

MapReduce-based DPCA approach 1 [76] 
T-Squared 1 [76] 

 

Table 5 gives the results for model selection. With respect to hyperparameter optimization, half of 

the studies followed that approach to control the learning process, of which seven reported about 

the specific search algorithm used. Three studies stated that they did not adopt hyperparameter 

optimization; no information was available from the remaining studies (n = 14). To mitigate the 

problems arising from imbalanced data, four studies adopted oversampling, three studies used 

undersampling, and two further studies applied under- and oversampling in combination. Two 

studies indicated the specific sampling ratio (1:4); hence, the failure and non-failure classes 

accounted for 20% and 80% of the training set, respectively [53,57]  
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Table 5. Model selection in studies (N = 34). 

Study Hyperparameter optimization Search algorithm Data sampling 

Abu-Samah et al. [50] NR NR NR 
Alves et al. [11] Yes NR NR 
Bonnevay et al. [51] No No NR 
Canizo et al. [52] Yes Grid search NR 

Chen et al. [12] No NR Undersampling, Oversampling 
Colone et al. [53] NR NR Undersampling (1:4) 
Dangut et al. [54] NR NR Oversampling 
Figueroa Barraza et al. [55] Yes Grid search NR 
Hamaide and Glineur [56] Yes Grid search NR 

Jansen et al. [57] Yes Grid search Undersampling (1:4) 
Kaparthi and Bumblauskas [9] NR NR NR 
Korhoseed and Beyca [58] Yes NR NR 
Kolokas et al. [10] Yes NR NR 

Kulkarni et al. [59] No NR NR 
Kusiak and Verma [7] Yes NR NR 
Leahy et al. [60] Yes NR Undersampling 
Lee et al. [61] Yes NR NR 

Li et al. [62] NR NR NR 
Lüttenberg et al. [63] NR NR Oversampling 
Mishra and Manjhi [64] NR NR NR 
Nowaczyk et al. [65] NR NR NR 

Orrù et al. [66] Yes Grid search Oversampling 
Pertselakis et al. [67] NR NR NR 
Proto et al. [49] Yes NR NR 
Prytz et al. [68] NR NR Oversampling 

Renga et al. [69] Yes NR NR 
Rombach and Keuper [70] Yes Grid search NR 
Savitha et al. [8] NR NR NR 
Silva and Capretz [71] Yes Random search NR 
Susto et al. [72] Yes NR NR 

Wang et al. [73] NR NR NR 
Wijs et al. [74] Yes NR Undersampling, Oversampling 
Xiang et al. [75] NR NR NR 
Yu et al. [76] NR NR NR 

Count 17 7 9 

Note. NR = not reported. 

3.5. Model evaluation 

The evaluation phase usually includes (1) the manipulation of factors, (2) assessment of 

performance using operational data, and (3) reporting of results using standard metrics. 

3.5.1. Factors 

Table 6 shows that the majority of studies manipulated the ML algorithm used (n = 21), one-third 

examined different lengths of the prediction window (n = 11), and five studies each varied the 

number of features and the size of the sliding window, respectively. Although performance depends 

on many factors throughout the ML process, each additional factor enhances the complexity of the 

analysis. Thus, it was not surprising that the sample predominantly included single-factor (n = 15) 
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and two-factor studies (n = 11) but only five three-factor studies; three studies did not manipulate 

any factor. 

Table 6. Factors in studies (N = 34). 

Factor Number of studies Studies 

ML algorithm 21 [7–9,12,49,53–55,57,58,61,65–67,70–76] 
Prediction window 11 [7,10,51,53,55,58,60,62,65,68,72] 
Number of features 5 [49,56,68,71,73] 
Sliding window 5 [9,49,60,62,73] 
Oversampling 4 [54,63,68,74] 

Hyperparameter 3 [11,54,57] 
Dataset size 1 [65] 
Rules 1 [50] 
Training set 1 [52] 

 

With respect to different ML algorithms, RF and Gradient Boosting were found to be superior in 

five and three studies, respectively. However, most studies found no evidence for differences in 

performance between algorithms. Again, it should be noted that the studies examined overlapping 

but different sets of algorithms. 

The findings for different prediction windows were largely consistent, with nine of eleven 

studies showing that smaller windows enhanced performance. Regarding the number of features, 

two studies reported positive effects [56,68], two studies found negative effects [49,73], and one 

study reported a negative effect for RF (but not for SVM and ANN) [71]. Of the five studies that 

examined different sliding windows, only the study by Proto et al. [49] found a positive effect. 

Oversampling of the failure class in the training set enhanced performance in three of four studies 

[63,68,74]. Different oversampling ratios were tested in two studies, of which one study showed a 

positive effect when oversampling attenuated the data imbalance [68]. Results for different 

hyperparameters of neural networks were provided in three studies, but no considerable effects were 

observed [11,54,57]. The dataset size was manipulated in the study by Nowaczyk et al. [65] 

(positive effect for a greater number of records). Moreover, no effects were found for using specific 

prediction rules [50] and learning from a larger training set [52], respectively. 

3.5.2. Model assessment 

Perusal of Table 7 shows that 18 studies stated the specific k-fold cross-validation method used, 

which partitioned the dataset into three (n = 2), four (n = 3), five (n = 9), nine (n = 1), and ten (n = 3) 

complementary subsets, respectively. 



 

13 
 

Table 7. Model assessment in studies (N = 34). 

Study Cross-validation Validation set  Test set 
Reporting form 
Chart Table 

Abu-Samah et al. [50] 4-fold Yes Yes Yes Yes 
Alves et al. [11] No Yes No Yes No 

Bonnevay et al. [51] No NR No Yes No 
Canizo et al. [52] NR Yes No Yes Yes 
Chen et al. [12] 4-fold Yes No Yes Yes 
Colone et al. [53] 5-fold Yes Yes Yes Yes 
Dangut et al. [54] NR Yes No No Yes 

Figueroa Barraza et al. [55] 5-fold Yes Yes Yes Yes 
Hamaide and Glineur [56] 9-fold Yes No Yes Yes 
Jansen et al. [57] NR Yes NR Yes No 
Kaparthi and Bumblauskas [9] No Yes No Yes Yes 

Korhoseed and Beyca [58] 5-fold Yes No Yes Yes 
Kolokas et al. [10] No Yes No Yes Yes 
Kulkarni et al. [59] No No Yes Yes Yes 
Kusiak and Verma [7] 10-fold Yes No Yes Yes 

Leahy et al. [60] NR Yes Yes Yes Yes 
Lee et al. [61] 5-fold Yes Yes No Yes 
Li et al. [62] 5-fold Yes Yes Yes Yes 
Lüttenberg et al. [63] 4-fold Yes No Yes Yes 

Mishra and Manjhi [64] NR NR No Yes No 
Nowaczyk et al. [65] No Yes No Yes No 
Orrù et al. [66] 3-fold Yes No Yes Yes 
Pertselakis et al. [67] 5-fold Yes  No No Yes 

Proto et al. [49] 3-fold Yes No No Yes 
Prytz et al. [68] 10-fold Yes No Yes Yes 
Renga et al. [69] No Yes No No No 
Rombach and Keuper [70] No NR No Yes Yes 
Savitha et al. [8] 5-fold Yes No No Yes 

Silva and Capretz [71] 5-fold Yes No No Yes 
Susto et al. [72] NR Yes No Yes Yes 
Wang et al. [73] No Yes No Yes Yes 
Wijs et al. [74] 5-fold Yes No No Yes 

Xiang et al. [75] 10-fold Yes No Yes Yes 
Yu et al. [76] NR Yes No Yes Yes 

Count 18 30 7 26 28 

Note. NR = Not reported. 

Every fifth study evaluated the prediction model separately on unknown data (test set, n = 7). 

Overall, the results were reported using various types of charts (n = 26) and tables (n = 28). 

3.5.3. Performance metrics 

Table 8 summarizes the adoption of performance metrics and gives the quantitative results. For 

each study and metric, we coded the best performance across all experimental conditions but we 

did not include the specific condition. 

The accuracy (ACC) metric, which is defined as the share of correct predictions among all 

predictions, ranged from 73.0 to 99.0% (n = 16). Nevertheless, it should be noted that ACC is an 

inappropriate measure for imbalanced classification problems: An extremely high ACC can be 

achieved by making correct predictions of the majority class (non-failure), even if the model 

performs extremely worse in predicting the minority class (failure). Therefore, accuracy needs to 
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be differentiated for the minority and majority classes, for which precision, recall, and specificity, 

among other metrics, are available [48]. 

Precision (PRE) represents the share of correct predictions among all failure predictions, 

and it ranged from 34.0 to 96.0% (n = 20). In general, precision should be high, because false failure 

predictions may cause unnecessary time and effort for verifying the current system condition. This 

expectation was not supported, with only 11 studies reporting a PRE greater than 80%. 

Table 8. Performance metrics and percentages reported in studies (N = 34). 

Study ACC PRE REC SPE FSC AUC Other 

Abu-Samah et al. [50]       x 
Alves et al. [11] 99.0       
Bonnevay et al. [51] 89.0      x 
Canizo et al. [52] 82.0  92.3 60.6    

Chen et al. [12] 86.0 83.0 73.0  78.0 91.0  
Colone et al. [53]      94.7  
Dangut et al. [54]  88.0 66.0    x 
Figueroa Barraza et al. [55]  90.8 90.8 89.0 99.5   

Hamaide and Glineur [56]  96.0 78.0    x 
Jansen et al. [57] 82.0 55.0 83.0  66.0   
Kaparthi and Bumblauskas [9] 79.4       
Korhoseed and Beyca [58] 92.3 92.6 89.5   92.8  

Kolokas et al. [10] 98.3 73.4 74.4 99.1 73.9  x 
Kulkarni et al. [59]  89.0 46.0     
Kusiak and Verma [7] 99.5      x 
Leahy et al. [60]  46.0 51.0     
Lee et al. [61]  72.9 79.5 99.1 87.8  x 

Li et al. [62]   99.8     
Lüttenberg et al. [63] 89.4 88.4 92.1 88.1  97.1  
Mishra and Manjhi [64]  65.0 80.0     
Nowaczyk et al. [65]     46.0   

Orrù et al. [66] 98.2 71.1 27.7 99.7 39.9  x 
Pertselakis et al. [67] 95.0       
Proto et al. [49]  84.3 83.0  82.2   
Prytz et al. [68] 73.0    23.0  x 

Renga et al. [69]  34.0 54.0     
Rombach and Keuper [70]  77.9 96.2    x 
Savitha et al. [8]   98.7 100.0   x 
Silva and Capretz [71] 98.1 96.0 96.0  95.9   

Susto et al. [72] 98.5 69.3 100.0     
Wang et al. [73]  82.2 49.3   81.8  
Wijs et al. [74]   58.0 100.0  74.0 x 
Xiang et al. [75] 88.1 86.5 76.2  81.0   

Yu et al. [76]       x 

Count 16 20 24 8 11 6 13 

Note. ACC = accuracy. AUC = area under the curve. FSC = F-score. PRE = precision. REC = recall. SPE = specificity. 

 

Recall (REC) is defined as the proportion of failures that were correctly predicted. REC should be 

high to avoid running into unexpected failures and downtimes. It was larger than 80% in 11 of 24 

relevant studies; hence, these studies overlooked less than every fifth failure. One-third of the 

relevant studies missed less than every tenth failure (REC larger than 90%; n = 8). In eight studies, 
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recall was complemented with specificity (SPE), defined as the proportion of non-failures that were 

correctly predicted. Due to the extreme data imbalance, predicting the non-failures was highly 

effective in five studies (> 99%). 

The performance of a prediction model can collectively be measured using the 

F-score, which is calculated from PRE and REC. For imbalanced datasets, achieving higher 

precision often comes at the cost of lower recall, and vice versa. In this sense, the 

F-score metric balances the different information conveyed by PRE and REC as class-specific 

metrics. Surprisingly, only one-third of the studies reported the F-score (n = 11). In five studies, F-

score was greater than 80%. Nine studies provided F-score, PRE, and REC to paint a comprehensive 

picture of performance. Six studies reported results for Area Under the Curve (AUC), which 

measures the ability of a classifier to distinguish between the minority and majority classes. Using 

standard cut-offs [77], one classifier can be considered as acceptable (AUC larger than 0.7) [74], 

one classifier as excellent (> 0.8) [73], and four classifiers as outstanding (> 0.9) [12,53,58,63]. 

4. Discussion 

The systematic review of ML technology for failure prediction assessed the adoption of specific 

ML techniques in previous research and their role in developing effective prediction models. In this 

section, we discuss the principal findings and implications for future research as well as the 

limitations of our review. 

4.1. Principal findings and implications 

Collectively, the studies included in this review address failure prediction for a highly diverse set 

of material systems in various domains, with very few studies examining similar systems. This 

diversity also mirrors in the prediction windows used (i.e., from a few seconds to several months), 

because different systems require different minimum times to perform maintenance actions. On one 

hand, these results demonstrate the applicability of ML technology for failure prediction in manifold 

contexts. On the other hand, the variation of application contexts has resulted in a large but 

fragmented body of knowledge. 

4.1.1. Data collection 

With respect to the datasets analyzed, our review indicates the practice of collecting data over a 

long period of time, usually many months or several years. Because learning is only possible if 

many example pairs of input-output for the same failure type are present, the time period increases 

for less frequent failures and greater data imbalance. Surprisingly, 38 percent of the studies did not 

report the number of failures, although this information is essential for determining whether 

learning a prediction model is feasible at all. To make matters worse, four studies used datasets that 

included less than ten failures [8,56,66,76]; such small sizes of the minority class make estimates 

of the precision for the minority class impossible, and thus evidence for the performance of the 
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trained prediction model cannot be derived from these studies. 

As in any empirical research, a detailed specification of the dataset is necessary to assess 

the generalizability of the results. Our review highlights that a relevant subset of studies do not give 

information about attributes, sampling rates, and records, while this information exhibits 

considerable variation in the remaining studies. Examples of detailed reporting are the study by 

Figueroa Barraza [55], which provides definitions of all attributes and their units of measurement, 

and the study by Wang et al. [73], which reports the number of records differentiated for the training 

and evaluation phases. Only one study manipulated the dataset size, but its prediction performance 

was very low, with the F-Score being smaller than 0.35 [65]. Opportunities exist to further examine 

the role of the dataset size, which can then help ascertain the amount of data that must be collected 

for a specific context. 

Although our review assessed the reported datasets for abstract data characteristics (e.g., 

number of attributes, data types), the range of data available to failure prediction has broadened by 

also including data from service processes and human interactions with systems [78]. In this social 

manufacturing context, ML techniques need to be adapted that allow recognizing the knowledge 

present in very different data attributes (granular computing perspective) [79]. 

4.1.2. Data preprocessing 

Regarding the preprocessing of data, feature selection is an important part of ML technology and 

the specific techniques used can have substantial effects by focusing on relevant attributes and 

reducing noise in the data [80]. Our results reveal that the adoption of feature selection is rather 

low, with no information about feature selection being available from one half of the studies. The 

other half of the studies adopted a wide array of techniques, demonstrating awareness of the design 

alternatives available from the literature. Indeed, four of the five studies that tested different 

techniques found positive effects on prediction performance. Given this evidence, the low level of 

adoption points to a missed opportunity in ML-based failure prediction. Future research should 

examine the role of feature selection by contrasting different techniques and varying the number of 

features. Moreover, researchers are advised to clearly state whether feature selection has been 

applied and eventually specify the techniques used. For instance, the study by Prytz et al. [68] both 

provides a detailed description of seven different techniques, including the rationale for their 

adoption, and an evaluation using a three-factor experiment. An alternative to feature selection is 

feature learning, which automatically learns features using unsupervised ML algorithms. Recent 

research has shown that feature learning is effective for fault detection [81], fault diagnosis [82] 

and degradation stage classification [83]. It would be interesting to empirically test whether feature 

learning can improve failure prediction. 

4.1.3. Model training 

With respect to the training of prediction models, we found the highest adoption rates for RF, SVM, 

ANN, and decision tree. This observation corroborates results of previous reviews examining 
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related tasks in industrial maintenance [14,15]. The prevalence of these algorithms is coincident 

with two-thirds of studies comparing the performance of different algorithms. However, few studies 

observed performance differences (except for RF and gradient boosting). Collectively, there is no 

evidence for one group of algorithms being superior to another group. This finding also holds true 

for hyperparameter optimization, which has been adopted in one half of the studies but evaluated 

in only three studies. 

The training of prediction models is made difficult by imbalanced data, with the failure 

class representing a small fraction of all system states. Learning from imbalanced data is an active 

field of ML research, and differentiated sampling techniques have been developed and 

experimentally evaluated [84,85], including task-specific oversampling techniques for fault 

detection in industrial maintenance [86]. Despite the design knowledge from this field, only one-

fourth of studies adopted any sampling technique. It is noteworthy that four studies tested the impact 

of oversampling, and three of these studies found positive effects on performance. We believe that 

this evidence provides further support to the importance of data sampling. For adopting data 

sampling, we recommend to report the specific sampling rate along with the resulting number of 

failures and non-failures in the training set (a good example is the reporting by Wijs et al. [74]). As 

data sampling originates from classification tasks, a potentially useful alternative is data 

augmentation for for time-series data and forecasting tasks [87]. 

4.1.4. Model evaluation 

Insights into the design of effective prediction models can be obtained from rigorous evaluations of 

the most relevant design alternatives. However, the sheer number of factors that potentially affect 

performance make the evaluation challenging. Our review substantiates this challenge through 

identifying nine groups of factors (Table 6). Nevertheless, the variety of data collection, 

preprocessing, and training undermines the ability to compare results for specific factors between 

studies. 

A standard evaluation technique is cross-validation, which also allows detecting the 

overfitting problem in learned prediction models. Overfitting characterizes a model that fits well to 

the training data but actually fails to learn the dataset features well, and thus performs worse on 

unknown data. In other words, when deployed in a productive system, the performance in predicting 

failures will be much lower, and the model might become useless. Our review uncovers that the 

adoption rate of cross-validation in the failure prediction literature is rather low at 53%. Therefore, 

it is likely that some of the proposed models suffer from overfitting. 

An important assumption of cross-validation is that the prediction performance for each 

fold should be very similar. This assumption can easily be verified by not only reporting the mean 

value calculated for all folds but presenting further distribution parameters (e.g., standard deviation, 

minimum, maximum), and reporting the specific results for each fold, as demonstrated in the study 

by Xiang et al. [75]. 

Model evaluation using a separate dataset of unknown data could be regarded as the “gold 

standard”. Although seven studies chose that approach, its implementation will often be overly 
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difficult or not possible at all. The additional effort required for collecting operational data could 

exceed the resources and time available. Specifically, the longer time needed might delay the 

intended deployment of the model. Against this backdrop, cross-validation as a technique that 

systematically derives unknown data from the training set and integrates it in the evaluation takes 

on even greater importance. 

With respect to the adoption of standard performance metrics, our review reveals that many 

studies relied upon metrics that are either inadequate for imbalanced data (accuracy, specificity) or 

only represent one facet of prediction performance (e.g., recall). On the other end of the spectrum, 

nine of the studies comprehensively assessed performance by reporting precision, recall, and F-

score. Considering that seven of the nine studies adopted cross-validation of which one study lacked 

a sufficient number of failures, six studies ranked highest in the quality of the evaluation 

[12,49,55,61,71,75]. For this set of studies, prediction performance was rather high as signified by 

the lower bounds and upper bounds for precision [0.729; 0.960], recall [0.730; 0.960] and F-score 

[0.810; 0.995]. Although a quantitative synthesis of results is beyond the scope of our review, these 

indicative results demonstrate the usefulness of adopting comprehensive metrics specific to the 

context of imbalanced data. Therefore, we suggest to: (1) perform cross-validation with the number 

of folds adjusted to the dataset size; (2) abandon the inadequate and misleading metrics accuracy 

and specificity; and (3) report precision, recall and F-score for all experimental conditions. 

Moreover, complementing the composite metric F-score with AUC enables a context-indepenent 

interpretation using standard cut-offs. 

4.2. Limitations 

The results of our review should be viewed in light of the following limitations. The first limitation 

is the heterogeneity of the included studies. Although we defined strict eligibility criteria, the studies 

were very heterogeneous with regard to data collection, preprocessing, training, and evaluation; 

hence, a direct comparison of outcomes using performance metrics was not possible. Second, the 

included studies exhibited rather few common reporting practices, which made the data extraction 

and synthesis intricate. Data extraction was further undermined by some studies that reported charts 

but no exact quantitative results. Given these challenges, we ensured the validity of the extracted 

data through using two independent reviewers and resolving inconsistencies by discussion with a 

third reviewer. Third, the data items of our review did not include quality criteria, such as 

justification of conducting the study, generalizability of the dataset used, and validity of 

conclusions. We applied a single proxy measure for quality (published in a refereed journal or 

conference proceedings), whereas all data items were specific to the adoption of ML technology. 

5. Conclusion 

This systematic review provides insights into the richness and depth of the published research 

adopting ML technology for failure prediction in industrial maintenance. The review’s conceptual 
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model – organized into data collection, data preprocessing, model training, and model evaluation – 

allowed us to assess the level of adoption and identify important contributions as well as 

opportunities for future research. The review results reveal that barriers towards the accumulation 

of knowledge about the development of ML-based failure prediction models and their performance 

evaluation continue to exist. As our review of thirty-four studies shows, diversity of ML designs is 

coincident with considerable heterogeneity in the reporting. We suggest specific recommendations 

for future research including reporting items that can enhance uniformity and comparability of 

studies. The new practices will assist in interpreting and comparing results obtained from single 

studies, and pave the road for improved synthesis of quantitative evidence. Overall, we believe that 

these efforts will help in enhancing knowledge about how failure prediction can benefit from 

advances in ML technology. 
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