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Purpose – Machine learning (ML) models are increasingly being used in industrial 

maintenance to predict system failures. However, less is known about how the time windows 

for reading data and making predictions affect performance. Therefore, the purpose of this 

research is to assess the impact of different sliding windows on prediction performance. 

Design/methodology/approach – The authors conducted a factorial experiment using 

high-dimensional machine data covering two years of operation, taken from a real industrial 

case for the production of high-precision milled and turned parts. The impacts of different 

reading and prediction windows were tested for three ML algorithms (Random Forest, Support 

Vector Machines, and Logistic Regression) and four metrics (accuracy, precision, recall, and 

F-score). 

Findings – The results reveal (1) the critical role of the prediction window contingent upon the 

application domain, (2) a non-monotonic relationship between the reading window and 

performance, and (3) how sliding window selection can systematically be used to improve 

different facets of performance. 

Originality/value – The study’s findings advance the knowledge of ML-based failure 

prediction, by highlighting how systematic variation of two important but yet understudied 

factors contributes to the development of more useful prediction models. 
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1. Introduction 

Machine learning (ML) is a core technology for predicting failures of material systems, such as 

components, machines, and manufacturing plants. These predictions assume a critical role in data-

driven maintenance strategies that aim at circumventing failures, enhancing system quality, and 

reducing costly downtimes (Zonta et al., 2020; Hoseini et al., 2021). Failure prediction using ML 

is a multi-disciplinary and vibrant field of research, which integrates perspectives of artificial 

intelligence, statistics, and industrial engineering (Kim et al., 2017). The interest in ML-based 

failure prediction has been amplified by improvements of ML algorithms, freely available software 

tools that implement these algorithms, and increased provision of operational data via sensor 

technology and digital platforms (Mazzuto and Ciarapica, 2019; Ochella et al., 2022). Previous 

research provides ample support for greater effectiveness and usefulness of ML-based prediction 

models compared to non-learning approaches (Carvalho et al., 2019; Montero Jimenez et al., 2020). 

The prediction task can be defined as forecasting whether a system will fail at a specific 

future point of time by analyzing time-series data about the system’s conditions. In developing a 

prediction model, the designer must decide about the prediction window, which is the time in 

advance the failure should be predicted. Another decision relates to the reading window defining 

how long historic data should be used for making the prediction. Because each window can impact 

the performance of prediction models, the two sliding windows should be chosen carefully. 

Despite the importance of sliding window selection, relatively little is known about how to 

make this selection. First, only a handful of studies tested different lengths of the reading window, 

thus considered this parameter in their model development (Kaparthi and Bumblauskas, 2020; 

Leahy et al., 2018; Proto et al., 2019; Wang et al., 2017). Second, the interplay between prediction 

and reading window has rarely been examined. Although a previous study varied both windows, it 

only tested two of the many possible experimental conditions (Li et al., 2014). Third, even less is 

known about how sliding window selection can systematically be used to improve the performance 

of prediction models.  

Against this backdrop, the objective of our research is to examine how sliding window 

selection impacts the performance of ML-based failure prediction. Specifically, we report on a 

factorial experiment in which we manipulated the prediction and reading windows, and assessed 

impacts on differentiated performance metrics for three different ML algorithms (Support Vector 

Machines, Random Forest, Logistic Regression) using a real-world data set. We aim to advance the 

understanding of how sliding window selection can effectively be used for ML-based failure 

prediction. This enhanced understanding can inform the development of prediction models and 

future studies for improving failure prediction.  

The remainder of this article is structured as follows. In Section 2, we discuss the literature 

related to sliding window selection. Section 3 presents the design of our experiment, and Section 4 

reports the results. The discussion of the findings and their implications are part of Section 5. A 

conclusion of our research is given in Section 6. 
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2. Literature review 

2.1. Problem statement 

Failure prediction in industrial maintenance can be regarded as a classification task that maps a 

future system state either onto one of two classes (binary or binomial classification) or one of three 

or more classes (multiclass or multinomial classification). The classes stand for types of failure and 

non-failure. Failure prediction is different from failure detection (Polycarpou and Vemuri, 1995), 

failure diagnosis (Chebira et al., 2021), and prediction of remaining useful life (Gokulachandran 

and Mohandas, 2015). The failure classes are usually represented by error codes standing for 

specific abnormal conditions of the system. Whereas some codes can lead to critical system outages, 

other codes do not require maintenance. Predicting such irrelevant codes will have no practical 

benefit for predictive maintenance. Conversely, the non-failure class represents the normal 

(healthy) condition. Figure 1 illustrates the overall approach for predicting the occurrence of failures 

based on defining two timespans, namely prediction window (PW) and reading window (RW). 

 

Fig. 1. Relationships between reading window, prediction window, and failure occurrence. 

Prediction window is defined as the time in advance the failure will be predicted. To be able to 

devise meaningful maintenance actions, PW should be no smaller than the time in advance the 

failure must be known to initiate a maintenance action that addresses this failure. Although a smaller 

PW might help in making better predictions, there will be no time left for interventions by the 

maintenance staff. Therefore, PW should be justified with respect to the domain, such as 

requirements of manufacturing processes and capabilities of maintenance staff. In other words, PW 

is a distinct parameter of prediction models, with its range constrained by the application domain.  

Reading window defines the timespan for which data will be used in making the prediction. 

Failure prediction relies upon past data that might provide early indications for unusual system 

states associated with the future failure. However, a larger RW does not necessarily enhance 

performance because the earlier data might have been recorded before the physical cause for the 

respective failure happened. In this case, all the additional (earlier) data will be irrelevant for making 

the prediction. 
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specific failure 
(or non-failure)
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For assessing the effects of prediction and reading windows on performance, standard 

classification metrics can be used. Whereas accuracy measures the performance of the overall 

prediction model, the measures precision, recall, and the F-score are specific to the failure class. 

Accuracy (ACC) is defined as the fraction between correct predictions to the total number of 

predictions. Precision (PRE) is calculated as the ratio between correctly predicted failures and the 

total number of predicted failures. Recall (REC) is specified as the ratio between correctly predicted 

failures and the total number of actual failures. The F-score (FSC) integrates the information 

conveyed by PRE and REC, and is particularly useful for imbalanced data sets in which the number 

of non-failures is multiple times greater than the number of failures. Note that reporting the accuracy 

is of little value for imbalanced classification tasks, and thus should be complemented with 

precision, recall, and F-score to provide a richer account of prediction performance (Tharwat, 

2021).  

2.2. Review of previous studies 

We discuss studies reporting on the performance of ML-based failure prediction in industrial 

maintenance. Our discussion includes studies that used real-world data sets, purposely either 

manipulated the prediction window, reading window, or both windows, and reported results for at 

least two different experimental conditions. Previous research has already acknowledged the 

relevance of the prediction window and provides domain-specific justifications for the size used. 

For instance, predictions must give system operators sufficient time to prepare for inspection 

(Khorsheed and Beyca, 2021), check the criticality of alarms (Bonnevay et al., 2020), and perform 

online interventions (Colone et al., 2019). 

Table I provides an overview of the identified studies by stating the manipulation of 

windows, the reported performance metrics, and the evaluation method.  

The first step in understanding of how the prediction window impacts performance is 

manipulating its size, thus treating this window as a variable of the prediction model, while holding 

the reading window constant. A total of nine studies adopted this approach and all but one study 

(Nowaczyk et al., 2013) found that performance monotonously decreased for larger PW. Although 

this finding holds true for a great variety of systems under investigation, three of the eight studies 

(Khorsheed and Beyca, 2021; Kusiak and Verma, 2012; Prytz et al., 2015) only reported accuracy, 

which is an inappropriate performance metric for classification tasks using imbalanced data sets. 

Insights into the reading window can be obtained from four studies that varied RW. The 

study by Kaparthie and Bumblauskas (Kaparthi and Bumblauskas, 2020) explored the largest 

number of levels (60). Their results suggest no clear relationship between RW and accuracy in case 

of Logistic Regression, whereas they indicate that a very small RW undermines the performance of 

Random Forest (Kaparthi and Bumblauskas, 2020). Two studies examined three (Proto et al., 2019) 

and six (Wang et al., 2017) different sizes, respectively, to identify the RW that maximizes 

performance. Another study tested two different sizes but performance was very low (PRE smaller 

than 0.1, and REC smaller than 0.5) (Leahy et al., 2018). 
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Table I. Review of prior studies examining sliding window selection. 

Study 
Manipulation of 
prediction window 

Manipulation of 
reading window 

Performance 
metrics 

Evaluation on 
unknown data 

Bonnevay et al. 
(2020) 

0 to 15 d 
(continuous) 

– ACC, FPR, FNR No details reported 

Colone et al. (2019) 1, 4 h – AUC CV (5-fold) 
Test set (10%) 

Figueroa Barraza et 
al. (2020) 

20 to 480 m 
(interval: 20 m) 

– PRE, REC, SPE CV (5-fold) 
Test set (20%) 

Khorsheed and Beyca 
(2021) 

1 to 9 h 
(interval: 1 h) 

– ACC CV (5-fold) 

Kolokas et al. (2020) 15, 20, 30, 45 m – ACC, PRE, REC Test set 

Kusiak and Verma 
(2012) 

10, 30, 60, 120, 180, 
240, 300 s 

– ACC CV (10-fold) 
Test set (53%) 

Nowaczyk et al. 
(2013) 

20 to 50 w 
(interval: 5 w) 

– FSC No details reported 

Prytz et al. (2015) 15 to 50 w 
(interval: 1 w) 

– ACC CV (10-fold) 

Susto et al. (2015) 1, 10, 20, 29, 38, 48, 
57, 66, 76, 85 (no unit) 

– ACC, PRE, REC CV 

Kaparthi and 
Bumblauskas (2020) 

–  1 to 60 d 
(interval: 1 d) 

ACC Test set (25%) 

Leahy et al. (2018) – 18, 42 h PRE, REC CV 

Proto et al. (2019) – 4, 8, 24 h FSC, PRE, REC CV (3-fold) 

Wang et al. (2017) – 10, 15, 20, 30, 45, 60 d AUC, PRE, REC Test set (36%) 

Li et al. (2014) 3, 7 d 7, 14 d FPR, REC CV (5-fold) 

Note. Window length measured in seconds (s), minutes (m), hours (h), days (d), and weeks (w). 
ACC = accuracy. AUC = area under the curve. CV = cross-validation. FNR = false negative rate. FPR = false 
positive rate. FSC = F-score. PRE = precision. REC = recall. SPE = specificity. 

 

The next step is to examine how variations of both windows affect prediction performance. Only a 

study by Li et al. (2014) followed this approach by defining each two levels for PW and RW, and 

contrasting two conditions: In the first condition, the two windows were equal (7 days). In the 

second condition, RW was more than four times larger (RW = 14 days; PW = 3 days). The latter 

condition led to greater recall and a smaller false positive rate compared to the former condition. 

However, as both windows were changed at the same time, individual effects of RW and PW cannot 

be isolated from the study. 

Overall, the results of previous research demonstrate the need to explore the effects of 

prediction and reading windows on failure prediction. Although many studies manipulated the 

prediction window, very little is known about the relevance of the reading window because previous 

research tested few levels of that variable. Only one study manipulated both windows; hence, the 

understanding of how the two windows work in concert is still limited. Collectively, our discussion 
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of previous research highlights a critical gap in the literature concerning the effective use of sliding 

window selection to improve ML-based failure prediction. 

3. Method 

This section presents the design of our experiment assessing the impact of sliding window selection 

on the performance of ML-based failure prediction. We characterize the data set used, specify the 

experimental design and the measurements of variables, and describe the procedures ranging from 

data extraction to model evaluation. 

3.1. Data set 

The data set was provided by a firm that operates a milling machine for high-precision milled and 

turned parts. We retrieved time-series data from a software application via a standardized and freely 

available protocol for monitoring machines (MTConnect Institute, 2021). Operational data for 

about 25 months was available (between 2016-08-15 and 2018-09-29), and all observations were 

recorded with a frequency of 30 seconds. Observations were missing for about four weeks, e.g., due 

to vacation shutdown (2016-12-26 to 2017-01-01, 2017-01-23 to 2017-01-29, 2017-07-17 to 2017-

07-23, and 2017-12-25 to 2017-12-31).  

A total of 493 attributes were included in the data set and they described fourteen 

components of the milling machine. Figure 2 shows the hierarchical data structure that was provided 

by the manufacturer. 

 

Fig. 2. Data structure for components of the milling machine. 

The attributes describing the components were segmented into three categories as follows: 

condition of the component at a specific time, event that occurred for this component (e.g., door 

closed), and sample representing continuous variables (e.g., vertical position of an object). System 

failures were defined by a specific condition (field ‘Error code’ of the condition table). Although a 

total of 201 different error codes were possible, only four codes were deemed critical for system 

condition

- ID
- Name
- Type
- Sequence number
- Status
- Error code
- Message
- Timestamp

event

- ID
- Name
- Event-Type
- Sequence number
-´State
- Timestamp

sample

- ID
- Name
- Type
- Sub type
- Sequence number
- Value
- Timestamp

component

- ID
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operation by the manufacturer. Because three error codes were extreme rare, we focused on the 

most frequent error code ‘low coolant level of the cooling system’ (coded as 351). The raw data set 

included about 1.3 million rows of which 945 belonged to the code 351; this corresponds to a 

relative frequency 0.07%. 

3.2. Design 

The experiment used a factorial repeated measures design. Figure 3 provides an overview of the 

three independent variables (factors) and the four dependent variables for assesing prediction 

performance. We measured performance using standard metrics for classification tasks (accuracy, 

precision, recall, and F-score). In summary, the 9x9x3 design allowed us to compare differentiated 

performance results for a total of 243 conditions. 

 

Fig. 3. Tested relationships between independent and dependent variables. 

Prediction window was the first independent variable. The manufacturer requires one hour for 

scheduling and executing the maintenance action, and therefore, predictions must be available at 

least one hour before the failure would occur. To assess how deviations from this domain 

requirement affect performance, we additionally tested two smaller (0.25 and 0.5 h) and six larger 

timespans (1.5, 2.0, 2.5, 3.0, 3.5, and 4.0 h). For reading window as the second factor, we devised 

the same levels as for PW, which allowed us to test a wide range of timespans. The third factor had 

three levels for Random Forest (RF) (Ho, 1995), Support Vector Machines (SVM) (Chang and Lin, 

2011), and Logistic Regression (LR) (Hosmer and Lemeshow, 2000), respectively. We considered 

RF and SVM as the most frequently used ML algorithms in failure prediction research (Leukel et 

al., 2021). We also tested LR because it is a traditional regression algorithm. Implementations of 

each algorithm are available in many open-source packages and software tools. 

3.3. Procedures 

Figure 4 provides an overview of the procedures used in conducting the experiment, which began 

by extracting data and ended by evaluating the trained prediction model.  

Factor: Prediction window
Levels: 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 h

Factor: Reading window
Levels: 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 h

Factor: Machine learning algorithm
Levels: RF, SVM, LR

Prediction performance
• Accuracy
• Precision
• Recall
• F-score
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Fig. 4. ML process of the experiment. 

Data extraction was performed by retrieving nested JavaScript Object Notation (JSON) files from 

the machine operator and transforming the data into a flattened structure, which is called dataframe 

(Rocklin, 2015). This structure defines columns for representing the attributes and rows for the 

recorded observations.  

Data merging included the aggregation of the transformed files into one dataframe, and the 

merging proceeded as follows. Data for each category (condition, event, sample) was sorted by its 

timestamp. Because local timestamps only changed if there was a change in at least one column of 

the category, only the first observation of duplicate timestamps was kept but all other duplicates 

were removed. Finally, all categories were joined on their timestamps to arrive at a single dataframe 

using a global timestamp. 

Data cleansing included the following steps: Attributes that did not change for the whole 

data set were removed; the sampling frequency of the timestamp was standardized to 30 seconds; 

and non-numeric values were transformed into numeric values by generating dummy columns (one-

hot encoding). The final dataframe had 2,064 attributes. We then performed cleansing on the target 

variable as follows: If the error code did not change for several consecutive observations, only the 

initial observation was kept and all subsequent error codes were deleted. If the failure was present 

in the prediction or reading window of another failure, then the first failure was kept. The final 

number of errors ranged between 36 and 43 because of different lengths of PW and RW through 

our experimental manipulation. 

Feature engineering was performed using the Python package tsfresh (Christ et al., 2018). 

We adopted six aggregation functions per attribute (maximum, mean, median, minimum, standard 

deviation, and variance), and received a total of 12,384 features. Their values were then 

standardized using z-transformation. 

Model training was separately performed for RF, SVM, and LR, and we used the default 

configuration for each algorithm as described in the ML library scikit-learn (Pedregosa et al., 2009). 

Due to the extreme low number of failures compared to non-failures, we balanced the ratio of 

classes using random undersampling (RUS). Therefore, the training set included observations of 

errors (ranging between 36 and 43) and an equal number of non-errors. In total, the training set was 

made of 72 through 86 samples and 12,384 features. We implemented RUS by randomly selecting 

a subset of non-errors equal to the number of errors and repeating this procedure ten times for each 

experimental condition. An alternative approach would be oversampling by synthetically 

generating samples of the error class. However, standard oversampling techniques, such as SMOTE 

(synthetic minority over-sampling), have not been designed for classification tasks on time-series 

Data
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data as this data call for more complex techniques and often domain-specific sampling procedures 

(Cao et al., 2013). Specifically, it is not known which past data associated with an error should be 

copied and how this data should be integrated into the time series. 

Model evaluation used 5-fold cross-validation by partitioning the data set into five subsets 

of equal size, conducting each of the training runs on four subsets, and validating the model on the 

remaining subset. Cross-validation is a commonly used evaluation technique that integrates 

unknown data derived from the training set and thus helps in mitigating the risk of overfitting the 

prediction model to the data from which it was learned (Kohavi, 1995). For each evaluation metric, 

we calculated the mean value for the five folds. 

4. Results 

This section reports the results of our experiment for assessing the impact of sliding window 

selection on prediction performance. We begin by presenting the results for each ML algorithm, 

and eventually focus on the algorithm that performed best. 

4.1. Impact of ML algorithm 

Figure 5 shows the accuracy and F-score of each ML algorithm under study. In this analysis, we set 

the prediction window at the minimum timespan required for taking a meaningful maintenance 

action (one hour). This time span is due to the application domain and was demanded by the 

machine operator. Perusal of the upper table in Figure 5 indicates that Random Forest achieved the 

highest accuracy for each level of the reading window. Specifically, the mean accuracy of RF was 

0.714 (SD = 0.023) and therefore higher compared to SVM (M = 0.656, SD = 0.020) and LR (M = 

0.667, SD = 0.021), respectively. The highest accuracy was always obtained for a reading window 

of three hours (RF: 0.743; SVM: 0.692; LR: 0.699). No clear pattern of results emerged for the 

impact of RW on accuracy though.  

 

Fig. 5. Accuracy and F-score by ML algorithm and reading window (prediction window: 1 h). 

Reading window

Accuracy 0.25 h 0.5 h 1.0 h 1.5 h 2.0 h 2.5 h 3.0 h 3.5 h 4.0 h

Algorithm

RF .720 .722 .685 .725 .688 .741 .743 .712 .686

SVM .649 .659 .633 .660 .652 .656 .692 .675 .627

LR .646 .675 .685 .663 .647 .649 .699 .692 .650

1st

Ranking of algorithms per column: 

2nd 3rd

Reading window

F-score 0.25 h 0.5 h 1.0 h 1.5 h 2.0 h 2.5 h 3.0 h 3.5 h 4.0 h

Algorithm

RF .658 .670 .632 .671 .613 .687 .688 .647 .617

SVM .598 .618 .605 .640 .626 .618 .655 .626 .581

LR .593 .608 .635 .626 .630 .592 .655 .628 .593
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With respect to the F-score, Random Forest performed best for seven out of nine reading windows, 

while Logistic Regression ranked first for two windows (results are shown in the lower table in 

Figure 5). The mean F-score of RF (0.654) was about 3.5 percentage points greater than that of 

SVM (0.619) and LR (0.618). Overall, RF considerably outperformed SVM and LR in terms of 

accuracy and F-score, and the differences between SVM and LR were rather marginal. For these 

reasons, we commence our reporting by focusing on RF. 

4.2. Impact of prediction window and reading window 

Figure 6 shows the accuracy for each combination of PW and RW for the RF algorithm. The 

horizontal axis represents the nine levels of PW, and the coloring indicates the levels of RW 

(ranging from dark green for 0.25 hours to dark red for 4.0 hours). Overall, accuracy was higher for 

smaller prediction windows, and this relationship was rather consistent across the levels of RW. 

For the combination of largest PW and RW (four hours each), accuracy was as low as 0.637. On 

the other hand, the maximum accuracy of 0.770 was observed for the smallest PW (0.25) and the 

second-smallest RW (0.5); using the smallest RW (0.25) led to a marginally lower accuracy of 

0.762. It is worth noting that the maximum was obtained for a prediction window being smaller 

than the minimum length required by the domain. In other words, this maximum is of no practical 

significance. Therefore, the ‘true’ maximum of accuracy was 0.743 (for PW = 1.0 and RW = 3.0). 

 

Fig. 6. Accuracy by prediction and reading window (algorithm: Random Forest). 
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Although the results shown in Figure 6 provide preliminary evidence for both smaller prediction 

and reading windows enhancing performance, the accuracy metric does not allow assessing how 

good the model predicts failures because it aggregates predictions of failures and non-failures. To 

overcome this deficit, we turn to the F-score. Figure 7 shows the results for the 81 conditions and 

uses coloring from red to green to indicate different intervals of the F-score (five percentage points 

each). As expected, the F-score was greater for smaller prediction windows, with its mean value 

increasing from 0.562 (PW = 4.0 h) to 0.695 (PW = 0.25 h). Under consideration of the domain-

specific lower bound of one hour, the highest value of F-score was 0.688 (RW = 3.0 h), followed 

by 0.687 (RW = 2.5 h). This result suggests that RW affected the F-score but the relationship was 

not strictly monotonic. 

 

Fig. 7. F-Score by prediction and reading window (algorithm: Random Forest). 

Further insights into the interplay between PW and RW can be obtained by disentangling the 

information provided by the F-score, thus assessing impacts on precision and recall separately. The 

results shown in Figure 8 demonstrate the negative effect of PW on precision, which decreased, on 

average, from 0.840 (PW = 0.25 h) to 0.753 (PW = 4.0 h). Using the smallest reading window did 

not maximize performance but precision varied greatly by RW. For instance, the differences 

between the lowest and highest mean precision were 0.123 (PW = 1.0 h) and 0.121 (PW = 2.0 h), 

respectively. 

Reading window

F-score 0.25 h 0.5 h 1.0 h 1.5 h 2.0 h 2.5 h 3.0 h 3.5 h 4.0 h

Prediction
window

0.25 h .730 .733 .705 .709 .668 .638 .671 .689 .708

0.5 h .716 .692 .689 .691 .700 .660 .654 .674 .627

1.0 h .658 .670 .632 .671 .613 .687 .688 .647 .617

1.5 h .604 .602 .632 .596 .621 .622 .627 .569 .571

2.0 h .624 .651 .622 .625 .607 .609 .612 .590 .598

2.5 h .650 .628 .581 .596 .580 .582 .555 .548 .575

3.0 h .547 .590 .601 .612 .571 .582 .579 .571 .564

3.5 h .578 .585 .569 .584 .552 .556 .569 .565 .571

4.0 h .546 .592 .567 .552 .549 .574 .556 .565 .561

>.500 >.550 >.600

Coloring by F-score:

>.650 >.700
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Fig. 8. Precision by prediction and reading window (algorithm: Random Forest). 

The results shown in Figure 9 are consistent with the findings discussed above, such that the mean 

recall increased for smaller prediction windows, i.e., from 0.476 (PW = 4.0 h) up to 0.569 (PW = 

1.0 h, excluding the non-relevant smaller PW). Again, performance was contingent upon the 

reading window. The differences between the lowest and highest mean recall were as large as 0.098 

(PW = 2.5 h) and 0.063 (PW = 1.5 h). 

 

Fig. 9. Recall by prediction and reading window (algorithm: Random Forest). 

Reading window

Precision 0.25 h 0.5 h 1.0 h 1.5 h 2.0 h 2.5 h 3.0 h 3.5 h 4.0 h

Prediction
window

0.25 h .842 .857 .851 .843 .833 .764 .878 .842 .849

0.5 h .816 .814 .833 .831 .856 .818 .840 .843 .776

1.0 h .841 .823 .753 .847 .775 .876 .868 .829 .787

1.5 h .784 .790 .781 .773 .801 .844 .806 .768 .758

2.0 h .814 .826 .772 .855 .826 .799 .801 .783 .734

2.5 h .801 .808 .781 .780 .784 .800 .751 .738 .778

3.0 h .753 .827 .807 .837 .762 .774 .793 .784 .748

3.5 h .723 .779 .798 .790 .734 .762 .739 .733 .758

4.0 h .718 .782 .777 .761 .739 .741 .787 .758 .718

Coloring by precision:

>.700 >.750 >.800 >.850

Reading window

Recall 0.25 h 0.5 h 1.0 h 1.5 h 2.0 h 2.5 h 3.0 h 3.5 h 4.0 h

Prediction
window

0.25 h .661 .657 .623 .632 .584 .568 .570 .605 .632

0.5 h .665 .628 .614 .619 .611 .579 .567 .581 .553

1.0 h .563 .585 .568 .591 .535 .592 .595 .551 .542

1.5 h .521 .519 .548 .503 .529 .526 .533 .485 .485

2.0 h .533 .560 .554 .526 .506 .518 .519 .508 .521

2.5 h .567 .543 .493 .513 .488 .485 .471 .469 .486

3.0 h .453 .498 .508 .504 .485 .502 .481 .480 .483

3.5 h .503 .490 .472 .485 .465 .466 .485 .486 .477

4.0 h .466 .501 .469 .460 .469 .494 .452 .486 .491

>.500 >.550 >.600

Coloring by recall:

>.650>.450
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5. Discussion 

5.1. Findings and implications 

This research experimentally assessed how sliding window selection impacts the performance of 

ML-based failure prediction. We found that performance increased for smaller prediction windows 

and this relationship was observed for the aggregate metrics accuracy and F-score as well as the 

failure-specific metrics precision and recall. However, the best performance was achieved for 

prediction windows that were smaller than the minimum time required to devise a maintenance 

action (domain experts demanded a PW of at least one hour). Based on this requirement, the best 

set of prediction models achieved an accuracy of 0.743, F-score of 0.654, precision of 0.822, and 

recall of 0.569 (average over all tested reading windows, Random Forest). The reading window had 

a considerable impact on all of the performance metrics but the relationship was not strictly 

monotonic. Selecting the smallest reading window did not lead to the best performance. 

Specifically, the differences between using the smallest RW and its optimum were 3.5 percentage 

points for the precision, 3.2 percentage points for the recall, and 3.0 percentage points for the F-

score. These results suggest that the reading window as a distinct parameter of the prediction model 

must be carefully chosen and the interactions between PW and RW should be assessed. 

Our study results have important implications for the development of ML-based failure 

prediction models. First, our study highlights the decisive role of the prediction window for making 

effective predictions. Our experiment provides evidence for smaller timespans enhancing accuracy, 

F-score, precision, and recall, and the differences in each metric were considerable even for rather 

small changes, although the domain-specific lower bound of the prediction window may not be 

breached. This relationship points to a trade-off between prediction performance and reaction time 

available for maintenance. In other words, the developer can purposely extend the prediction 

window, thus take the risk of lower performance, to gain additional time for the maintenance staff 

to implement preventive measures. The additional time might compensate for the loss of 

performance. In our experiment, for instance, extending the prediction window from one to two 

hours, which would double the time available, led to reductions in the precision and recall of only 

two and four percentage points, respectively (across all reading windows). 

Second, the reading window is another parameter for which our experiment provides further 

insights into how variation affects prediction performance. Our results suggest that RW is of 

importance to performance, but its impact is more nuanced than that of PW. Therefore, in 

developing prediction models, a much broader range of reading windows should be tested compared 

to designs proposed in previous research (Proto et al., 2019; Leahy et al., 2018). Similar to the 

prediction window, performance can considerably be improved by varying the reading window; 

hence, such additional effort can actually make the difference. 

Third, for research streams examining novel approaches to ML-based failure prediction, 

our work provides guidance for future studies. Specifically, experimental studies should always 

report on the specific sliding windows used, whether and how the windows were manipulated, and 

assess both the direct effect of each window and the interaction effects. Moreover, we suggest 
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adopting differentiated performance metrics instead of coarse metrics such as accuracy, and report 

results for all practically relevant combinations of windows. This information is essential for 

assessing the validity, usefulness, and generalizability of reported results. Administering more 

complex experimental designs and providing additional information on outcomes can facilitate the 

accumulation of knowledge. This new practice would promote the comparison and integration of 

results from single studies, which will then better inform the development of effective ML model 

for failure prediction. 

5.2. Limitations 

The results of the present study should be viewed in light of the following limitations. First, even 

though we used two years of operational data for a system failure that was deemed critical by 

domain experts, the number of failure instances was rather small. Data cleansing further reduced 

this number by removing consecutive failures. Although other types of failures were also relevant 

for the domain, the number of observations was insufficient for learning a prediction model. 

Second, the ML prediction models were learned from structured machine data but no free-form text 

data, such as maintenance reports, was processed. Third, the experiment used a data set for a specific 

machine; hence, the results may not necessarily be generalized to other systems. Fourth, we focused 

on the relationships between PW, RW and performance, whereas we did not apply optimization 

techniques, such as hyperparameter optimization, to maximize prediction performance. 

6. Conclusion 

Failure prediction is a critical task for the realization of proactive maintenance strategies in the 

context of cyber-physical manufacturing systems. Although this task can effectively be automated 

using Machine Learning, the development of ML-based prediction models is still challenging due 

to the many factors that may affect prediction performance. By focusing on the prediction and 

reading windows, our research examines two important but yet understudied factors. While we 

found a positive effect of smaller prediction windows on performance, the reading window played 

a more nuanced role but was critical for enhancing performance. Decisions about the reading 

window should always consider the prediction window and adopt differentiated metrics to paint a 

comprehensive picture of performance. Taken together, our findings suggest that the selection of 

sliding windows requires increased efforts in the development of failure prediction models. Our 

study contributes to this knowledge through a systematic assessment of how purposeful selection 

can produce predictions that are more precise (i.e., reducing the number of false positives) and 

foretell a greater share of all failures (i.e., increasing the number of true positives). 
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