

1

Machine learning-based failure prediction in industrial maintenance:

improving performance by sliding window selection

Joerg Leukel, Julian González and Martin Riekert

Faculty of Business, Economics & Social Sciences

University of Hohenheim, Schwerzstr. 35, 70599 Stuttgart, Germany

joerg.leukel@uni-hohenheim.de

Purpose – Machine learning (ML) models are increasingly being used in industrial

maintenance to predict system failures. However, less is known about how the time windows

for reading data and making predictions affect performance. Therefore, the purpose of this

research is to assess the impact of different sliding windows on prediction performance.

Design/methodology/approach – The authors conducted a factorial experiment using

high-dimensional machine data covering two years of operation, taken from a real industrial

case for the production of high-precision milled and turned parts. The impacts of different

reading and prediction windows were tested for three ML algorithms (Random Forest, Support

Vector Machines, and Logistic Regression) and four metrics (accuracy, precision, recall, and

F-score).

Findings – The results reveal (1) the critical role of the prediction window contingent upon the

application domain, (2) a non-monotonic relationship between the reading window and

performance, and (3) how sliding window selection can systematically be used to improve

different facets of performance.

Originality/value – The study’s findings advance the knowledge of ML-based failure

prediction, by highlighting how systematic variation of two important but yet understudied

factors contributes to the development of more useful prediction models.

Keywords Failure prediction; Fault prediction; Industry 4.0; Machine learning; Predictive

maintenance

Paper type Research paper (Reliability)

This is the author accepted manuscript of the following article:

Leukel, J., González, J., & Riekert, J. (2022). Machine learning-based failure prediction in industrial
maintenance: improving performance by sliding window selection. International Journal of Quality &

Reliability Management, https://doi.org/10.1108/IJQRM-12-2021-0439

This author accepted manuscript is deposited under a Creative Commons Attribution Non-commercial 4.0
International (CC BY-NC) licence. This means that anyone may distribute, adapt, and build upon the work for

non-commercial purposes, subject to full attribution. If you wish to use this manuscript for commercial
purposes, please contact permissions@emerald.com

2

1. Introduction

Machine learning (ML) is a core technology for predicting failures of material systems, such as

components, machines, and manufacturing plants. These predictions assume a critical role in data-

driven maintenance strategies that aim at circumventing failures, enhancing system quality, and

reducing costly downtimes (Zonta et al., 2020; Hoseini et al., 2021). Failure prediction using ML

is a multi-disciplinary and vibrant field of research, which integrates perspectives of artificial

intelligence, statistics, and industrial engineering (Kim et al., 2017). The interest in ML-based

failure prediction has been amplified by improvements of ML algorithms, freely available software

tools that implement these algorithms, and increased provision of operational data via sensor

technology and digital platforms (Mazzuto and Ciarapica, 2019; Ochella et al., 2022). Previous

research provides ample support for greater effectiveness and usefulness of ML-based prediction

models compared to non-learning approaches (Carvalho et al., 2019; Montero Jimenez et al., 2020).

The prediction task can be defined as forecasting whether a system will fail at a specific

future point of time by analyzing time-series data about the system’s conditions. In developing a

prediction model, the designer must decide about the prediction window, which is the time in

advance the failure should be predicted. Another decision relates to the reading window defining

how long historic data should be used for making the prediction. Because each window can impact

the performance of prediction models, the two sliding windows should be chosen carefully.

Despite the importance of sliding window selection, relatively little is known about how to

make this selection. First, only a handful of studies tested different lengths of the reading window,

thus considered this parameter in their model development (Kaparthi and Bumblauskas, 2020;

Leahy et al., 2018; Proto et al., 2019; Wang et al., 2017). Second, the interplay between prediction

and reading window has rarely been examined. Although a previous study varied both windows, it

only tested two of the many possible experimental conditions (Li et al., 2014). Third, even less is

known about how sliding window selection can systematically be used to improve the performance

of prediction models.

Against this backdrop, the objective of our research is to examine how sliding window

selection impacts the performance of ML-based failure prediction. Specifically, we report on a

factorial experiment in which we manipulated the prediction and reading windows, and assessed

impacts on differentiated performance metrics for three different ML algorithms (Support Vector

Machines, Random Forest, Logistic Regression) using a real-world data set. We aim to advance the

understanding of how sliding window selection can effectively be used for ML-based failure

prediction. This enhanced understanding can inform the development of prediction models and

future studies for improving failure prediction.

The remainder of this article is structured as follows. In Section 2, we discuss the literature

related to sliding window selection. Section 3 presents the design of our experiment, and Section 4

reports the results. The discussion of the findings and their implications are part of Section 5. A

conclusion of our research is given in Section 6.

3

2. Literature review

2.1. Problem statement

Failure prediction in industrial maintenance can be regarded as a classification task that maps a

future system state either onto one of two classes (binary or binomial classification) or one of three

or more classes (multiclass or multinomial classification). The classes stand for types of failure and

non-failure. Failure prediction is different from failure detection (Polycarpou and Vemuri, 1995),

failure diagnosis (Chebira et al., 2021), and prediction of remaining useful life (Gokulachandran

and Mohandas, 2015). The failure classes are usually represented by error codes standing for

specific abnormal conditions of the system. Whereas some codes can lead to critical system outages,

other codes do not require maintenance. Predicting such irrelevant codes will have no practical

benefit for predictive maintenance. Conversely, the non-failure class represents the normal

(healthy) condition. Figure 1 illustrates the overall approach for predicting the occurrence of failures

based on defining two timespans, namely prediction window (PW) and reading window (RW).

Fig. 1. Relationships between reading window, prediction window, and failure occurrence.

Prediction window is defined as the time in advance the failure will be predicted. To be able to

devise meaningful maintenance actions, PW should be no smaller than the time in advance the

failure must be known to initiate a maintenance action that addresses this failure. Although a smaller

PW might help in making better predictions, there will be no time left for interventions by the

maintenance staff. Therefore, PW should be justified with respect to the domain, such as

requirements of manufacturing processes and capabilities of maintenance staff. In other words, PW

is a distinct parameter of prediction models, with its range constrained by the application domain.

Reading window defines the timespan for which data will be used in making the prediction.

Failure prediction relies upon past data that might provide early indications for unusual system

states associated with the future failure. However, a larger RW does not necessarily enhance

performance because the earlier data might have been recorded before the physical cause for the

respective failure happened. In this case, all the additional (earlier) data will be irrelevant for making

the prediction.

Occurrence of
specific failure
(or non-failure)

time
t-1 t0 t1

Reading window

Prediction window

data

4

For assessing the effects of prediction and reading windows on performance, standard

classification metrics can be used. Whereas accuracy measures the performance of the overall

prediction model, the measures precision, recall, and the F-score are specific to the failure class.

Accuracy (ACC) is defined as the fraction between correct predictions to the total number of

predictions. Precision (PRE) is calculated as the ratio between correctly predicted failures and the

total number of predicted failures. Recall (REC) is specified as the ratio between correctly predicted

failures and the total number of actual failures. The F-score (FSC) integrates the information

conveyed by PRE and REC, and is particularly useful for imbalanced data sets in which the number

of non-failures is multiple times greater than the number of failures. Note that reporting the accuracy

is of little value for imbalanced classification tasks, and thus should be complemented with

precision, recall, and F-score to provide a richer account of prediction performance (Tharwat,

2021).

2.2. Review of previous studies

We discuss studies reporting on the performance of ML-based failure prediction in industrial

maintenance. Our discussion includes studies that used real-world data sets, purposely either

manipulated the prediction window, reading window, or both windows, and reported results for at

least two different experimental conditions. Previous research has already acknowledged the

relevance of the prediction window and provides domain-specific justifications for the size used.

For instance, predictions must give system operators sufficient time to prepare for inspection

(Khorsheed and Beyca, 2021), check the criticality of alarms (Bonnevay et al., 2020), and perform

online interventions (Colone et al., 2019).

Table I provides an overview of the identified studies by stating the manipulation of

windows, the reported performance metrics, and the evaluation method.

The first step in understanding of how the prediction window impacts performance is

manipulating its size, thus treating this window as a variable of the prediction model, while holding

the reading window constant. A total of nine studies adopted this approach and all but one study

(Nowaczyk et al., 2013) found that performance monotonously decreased for larger PW. Although

this finding holds true for a great variety of systems under investigation, three of the eight studies

(Khorsheed and Beyca, 2021; Kusiak and Verma, 2012; Prytz et al., 2015) only reported accuracy,

which is an inappropriate performance metric for classification tasks using imbalanced data sets.

Insights into the reading window can be obtained from four studies that varied RW. The

study by Kaparthie and Bumblauskas (Kaparthi and Bumblauskas, 2020) explored the largest

number of levels (60). Their results suggest no clear relationship between RW and accuracy in case

of Logistic Regression, whereas they indicate that a very small RW undermines the performance of

Random Forest (Kaparthi and Bumblauskas, 2020). Two studies examined three (Proto et al., 2019)

and six (Wang et al., 2017) different sizes, respectively, to identify the RW that maximizes

performance. Another study tested two different sizes but performance was very low (PRE smaller

than 0.1, and REC smaller than 0.5) (Leahy et al., 2018).

5

Table I. Review of prior studies examining sliding window selection.

Study
Manipulation of
prediction window

Manipulation of
reading window

Performance
metrics

Evaluation on
unknown data

Bonnevay et al.
(2020)

0 to 15 d
(continuous)

– ACC, FPR, FNR No details reported

Colone et al. (2019) 1, 4 h – AUC CV (5-fold)
Test set (10%)

Figueroa Barraza et
al. (2020)

20 to 480 m
(interval: 20 m)

– PRE, REC, SPE CV (5-fold)
Test set (20%)

Khorsheed and Beyca
(2021)

1 to 9 h
(interval: 1 h)

– ACC CV (5-fold)

Kolokas et al. (2020) 15, 20, 30, 45 m – ACC, PRE, REC Test set

Kusiak and Verma
(2012)

10, 30, 60, 120, 180,
240, 300 s

– ACC CV (10-fold)
Test set (53%)

Nowaczyk et al.
(2013)

20 to 50 w
(interval: 5 w)

– FSC No details reported

Prytz et al. (2015) 15 to 50 w
(interval: 1 w)

– ACC CV (10-fold)

Susto et al. (2015) 1, 10, 20, 29, 38, 48,
57, 66, 76, 85 (no unit)

– ACC, PRE, REC CV

Kaparthi and
Bumblauskas (2020)

– 1 to 60 d
(interval: 1 d)

ACC Test set (25%)

Leahy et al. (2018) – 18, 42 h PRE, REC CV

Proto et al. (2019) – 4, 8, 24 h FSC, PRE, REC CV (3-fold)

Wang et al. (2017) – 10, 15, 20, 30, 45, 60 d AUC, PRE, REC Test set (36%)

Li et al. (2014) 3, 7 d 7, 14 d FPR, REC CV (5-fold)

Note. Window length measured in seconds (s), minutes (m), hours (h), days (d), and weeks (w).
ACC = accuracy. AUC = area under the curve. CV = cross-validation. FNR = false negative rate. FPR = false
positive rate. FSC = F-score. PRE = precision. REC = recall. SPE = specificity.

The next step is to examine how variations of both windows affect prediction performance. Only a

study by Li et al. (2014) followed this approach by defining each two levels for PW and RW, and

contrasting two conditions: In the first condition, the two windows were equal (7 days). In the

second condition, RW was more than four times larger (RW = 14 days; PW = 3 days). The latter

condition led to greater recall and a smaller false positive rate compared to the former condition.

However, as both windows were changed at the same time, individual effects of RW and PW cannot

be isolated from the study.

Overall, the results of previous research demonstrate the need to explore the effects of

prediction and reading windows on failure prediction. Although many studies manipulated the

prediction window, very little is known about the relevance of the reading window because previous

research tested few levels of that variable. Only one study manipulated both windows; hence, the

understanding of how the two windows work in concert is still limited. Collectively, our discussion

6

of previous research highlights a critical gap in the literature concerning the effective use of sliding

window selection to improve ML-based failure prediction.

3. Method

This section presents the design of our experiment assessing the impact of sliding window selection

on the performance of ML-based failure prediction. We characterize the data set used, specify the

experimental design and the measurements of variables, and describe the procedures ranging from

data extraction to model evaluation.

3.1. Data set

The data set was provided by a firm that operates a milling machine for high-precision milled and

turned parts. We retrieved time-series data from a software application via a standardized and freely

available protocol for monitoring machines (MTConnect Institute, 2021). Operational data for

about 25 months was available (between 2016-08-15 and 2018-09-29), and all observations were

recorded with a frequency of 30 seconds. Observations were missing for about four weeks, e.g., due

to vacation shutdown (2016-12-26 to 2017-01-01, 2017-01-23 to 2017-01-29, 2017-07-17 to 2017-

07-23, and 2017-12-25 to 2017-12-31).

A total of 493 attributes were included in the data set and they described fourteen

components of the milling machine. Figure 2 shows the hierarchical data structure that was provided

by the manufacturer.

Fig. 2. Data structure for components of the milling machine.

The attributes describing the components were segmented into three categories as follows:

condition of the component at a specific time, event that occurred for this component (e.g., door

closed), and sample representing continuous variables (e.g., vertical position of an object). System

failures were defined by a specific condition (field ‘Error code’ of the condition table). Although a

total of 201 different error codes were possible, only four codes were deemed critical for system

condition

- ID
- Name
- Type
- Sequence number
- Status
- Error code
- Message
- Timestamp

event

- ID
- Name
- Event-Type
- Sequence number
-´State
- Timestamp

sample

- ID
- Name
- Type
- Sub type
- Sequence number
- Value
- Timestamp

component

- ID

7

operation by the manufacturer. Because three error codes were extreme rare, we focused on the

most frequent error code ‘low coolant level of the cooling system’ (coded as 351). The raw data set

included about 1.3 million rows of which 945 belonged to the code 351; this corresponds to a

relative frequency 0.07%.

3.2. Design

The experiment used a factorial repeated measures design. Figure 3 provides an overview of the

three independent variables (factors) and the four dependent variables for assesing prediction

performance. We measured performance using standard metrics for classification tasks (accuracy,

precision, recall, and F-score). In summary, the 9x9x3 design allowed us to compare differentiated

performance results for a total of 243 conditions.

Fig. 3. Tested relationships between independent and dependent variables.

Prediction window was the first independent variable. The manufacturer requires one hour for

scheduling and executing the maintenance action, and therefore, predictions must be available at

least one hour before the failure would occur. To assess how deviations from this domain

requirement affect performance, we additionally tested two smaller (0.25 and 0.5 h) and six larger

timespans (1.5, 2.0, 2.5, 3.0, 3.5, and 4.0 h). For reading window as the second factor, we devised

the same levels as for PW, which allowed us to test a wide range of timespans. The third factor had

three levels for Random Forest (RF) (Ho, 1995), Support Vector Machines (SVM) (Chang and Lin,

2011), and Logistic Regression (LR) (Hosmer and Lemeshow, 2000), respectively. We considered

RF and SVM as the most frequently used ML algorithms in failure prediction research (Leukel et

al., 2021). We also tested LR because it is a traditional regression algorithm. Implementations of

each algorithm are available in many open-source packages and software tools.

3.3. Procedures

Figure 4 provides an overview of the procedures used in conducting the experiment, which began

by extracting data and ended by evaluating the trained prediction model.

Factor: Prediction window
Levels: 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 h

Factor: Reading window
Levels: 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 h

Factor: Machine learning algorithm
Levels: RF, SVM, LR

Prediction performance
• Accuracy
• Precision
• Recall
• F-score

8

Fig. 4. ML process of the experiment.

Data extraction was performed by retrieving nested JavaScript Object Notation (JSON) files from

the machine operator and transforming the data into a flattened structure, which is called dataframe

(Rocklin, 2015). This structure defines columns for representing the attributes and rows for the

recorded observations.

Data merging included the aggregation of the transformed files into one dataframe, and the

merging proceeded as follows. Data for each category (condition, event, sample) was sorted by its

timestamp. Because local timestamps only changed if there was a change in at least one column of

the category, only the first observation of duplicate timestamps was kept but all other duplicates

were removed. Finally, all categories were joined on their timestamps to arrive at a single dataframe

using a global timestamp.

Data cleansing included the following steps: Attributes that did not change for the whole

data set were removed; the sampling frequency of the timestamp was standardized to 30 seconds;

and non-numeric values were transformed into numeric values by generating dummy columns (one-

hot encoding). The final dataframe had 2,064 attributes. We then performed cleansing on the target

variable as follows: If the error code did not change for several consecutive observations, only the

initial observation was kept and all subsequent error codes were deleted. If the failure was present

in the prediction or reading window of another failure, then the first failure was kept. The final

number of errors ranged between 36 and 43 because of different lengths of PW and RW through

our experimental manipulation.

Feature engineering was performed using the Python package tsfresh (Christ et al., 2018).

We adopted six aggregation functions per attribute (maximum, mean, median, minimum, standard

deviation, and variance), and received a total of 12,384 features. Their values were then

standardized using z-transformation.

Model training was separately performed for RF, SVM, and LR, and we used the default

configuration for each algorithm as described in the ML library scikit-learn (Pedregosa et al., 2009).

Due to the extreme low number of failures compared to non-failures, we balanced the ratio of

classes using random undersampling (RUS). Therefore, the training set included observations of

errors (ranging between 36 and 43) and an equal number of non-errors. In total, the training set was

made of 72 through 86 samples and 12,384 features. We implemented RUS by randomly selecting

a subset of non-errors equal to the number of errors and repeating this procedure ten times for each

experimental condition. An alternative approach would be oversampling by synthetically

generating samples of the error class. However, standard oversampling techniques, such as SMOTE

(synthetic minority over-sampling), have not been designed for classification tasks on time-series

Data
extraction

Data
merging

Data
cleansing

Feature
engineering

Model
trainingFlattened

data
Complete

data
Cleaned

data
Processed

data

Data stream

Model
evaluationTrained

model

Evaluated model

9

data as this data call for more complex techniques and often domain-specific sampling procedures

(Cao et al., 2013). Specifically, it is not known which past data associated with an error should be

copied and how this data should be integrated into the time series.

Model evaluation used 5-fold cross-validation by partitioning the data set into five subsets

of equal size, conducting each of the training runs on four subsets, and validating the model on the

remaining subset. Cross-validation is a commonly used evaluation technique that integrates

unknown data derived from the training set and thus helps in mitigating the risk of overfitting the

prediction model to the data from which it was learned (Kohavi, 1995). For each evaluation metric,

we calculated the mean value for the five folds.

4. Results

This section reports the results of our experiment for assessing the impact of sliding window

selection on prediction performance. We begin by presenting the results for each ML algorithm,

and eventually focus on the algorithm that performed best.

4.1. Impact of ML algorithm

Figure 5 shows the accuracy and F-score of each ML algorithm under study. In this analysis, we set

the prediction window at the minimum timespan required for taking a meaningful maintenance

action (one hour). This time span is due to the application domain and was demanded by the

machine operator. Perusal of the upper table in Figure 5 indicates that Random Forest achieved the

highest accuracy for each level of the reading window. Specifically, the mean accuracy of RF was

0.714 (SD = 0.023) and therefore higher compared to SVM (M = 0.656, SD = 0.020) and LR (M =

0.667, SD = 0.021), respectively. The highest accuracy was always obtained for a reading window

of three hours (RF: 0.743; SVM: 0.692; LR: 0.699). No clear pattern of results emerged for the

impact of RW on accuracy though.

Fig. 5. Accuracy and F-score by ML algorithm and reading window (prediction window: 1 h).

Reading window

Accuracy 0.25 h 0.5 h 1.0 h 1.5 h 2.0 h 2.5 h 3.0 h 3.5 h 4.0 h

Algorithm

RF .720 .722 .685 .725 .688 .741 .743 .712 .686

SVM .649 .659 .633 .660 .652 .656 .692 .675 .627

LR .646 .675 .685 .663 .647 .649 .699 .692 .650

1st

Ranking of algorithms per column:

2nd 3rd

Reading window

F-score 0.25 h 0.5 h 1.0 h 1.5 h 2.0 h 2.5 h 3.0 h 3.5 h 4.0 h

Algorithm

RF .658 .670 .632 .671 .613 .687 .688 .647 .617

SVM .598 .618 .605 .640 .626 .618 .655 .626 .581

LR .593 .608 .635 .626 .630 .592 .655 .628 .593

10

With respect to the F-score, Random Forest performed best for seven out of nine reading windows,

while Logistic Regression ranked first for two windows (results are shown in the lower table in

Figure 5). The mean F-score of RF (0.654) was about 3.5 percentage points greater than that of

SVM (0.619) and LR (0.618). Overall, RF considerably outperformed SVM and LR in terms of

accuracy and F-score, and the differences between SVM and LR were rather marginal. For these

reasons, we commence our reporting by focusing on RF.

4.2. Impact of prediction window and reading window

Figure 6 shows the accuracy for each combination of PW and RW for the RF algorithm. The

horizontal axis represents the nine levels of PW, and the coloring indicates the levels of RW

(ranging from dark green for 0.25 hours to dark red for 4.0 hours). Overall, accuracy was higher for

smaller prediction windows, and this relationship was rather consistent across the levels of RW.

For the combination of largest PW and RW (four hours each), accuracy was as low as 0.637. On

the other hand, the maximum accuracy of 0.770 was observed for the smallest PW (0.25) and the

second-smallest RW (0.5); using the smallest RW (0.25) led to a marginally lower accuracy of

0.762. It is worth noting that the maximum was obtained for a prediction window being smaller

than the minimum length required by the domain. In other words, this maximum is of no practical

significance. Therefore, the ‘true’ maximum of accuracy was 0.743 (for PW = 1.0 and RW = 3.0).

Fig. 6. Accuracy by prediction and reading window (algorithm: Random Forest).

11

Although the results shown in Figure 6 provide preliminary evidence for both smaller prediction

and reading windows enhancing performance, the accuracy metric does not allow assessing how

good the model predicts failures because it aggregates predictions of failures and non-failures. To

overcome this deficit, we turn to the F-score. Figure 7 shows the results for the 81 conditions and

uses coloring from red to green to indicate different intervals of the F-score (five percentage points

each). As expected, the F-score was greater for smaller prediction windows, with its mean value

increasing from 0.562 (PW = 4.0 h) to 0.695 (PW = 0.25 h). Under consideration of the domain-

specific lower bound of one hour, the highest value of F-score was 0.688 (RW = 3.0 h), followed

by 0.687 (RW = 2.5 h). This result suggests that RW affected the F-score but the relationship was

not strictly monotonic.

Fig. 7. F-Score by prediction and reading window (algorithm: Random Forest).

Further insights into the interplay between PW and RW can be obtained by disentangling the

information provided by the F-score, thus assessing impacts on precision and recall separately. The

results shown in Figure 8 demonstrate the negative effect of PW on precision, which decreased, on

average, from 0.840 (PW = 0.25 h) to 0.753 (PW = 4.0 h). Using the smallest reading window did

not maximize performance but precision varied greatly by RW. For instance, the differences

between the lowest and highest mean precision were 0.123 (PW = 1.0 h) and 0.121 (PW = 2.0 h),

respectively.

Reading window

F-score 0.25 h 0.5 h 1.0 h 1.5 h 2.0 h 2.5 h 3.0 h 3.5 h 4.0 h

Prediction
window

0.25 h .730 .733 .705 .709 .668 .638 .671 .689 .708

0.5 h .716 .692 .689 .691 .700 .660 .654 .674 .627

1.0 h .658 .670 .632 .671 .613 .687 .688 .647 .617

1.5 h .604 .602 .632 .596 .621 .622 .627 .569 .571

2.0 h .624 .651 .622 .625 .607 .609 .612 .590 .598

2.5 h .650 .628 .581 .596 .580 .582 .555 .548 .575

3.0 h .547 .590 .601 .612 .571 .582 .579 .571 .564

3.5 h .578 .585 .569 .584 .552 .556 .569 .565 .571

4.0 h .546 .592 .567 .552 .549 .574 .556 .565 .561

>.500 >.550 >.600

Coloring by F-score:

>.650 >.700

12

Fig. 8. Precision by prediction and reading window (algorithm: Random Forest).

The results shown in Figure 9 are consistent with the findings discussed above, such that the mean

recall increased for smaller prediction windows, i.e., from 0.476 (PW = 4.0 h) up to 0.569 (PW =

1.0 h, excluding the non-relevant smaller PW). Again, performance was contingent upon the

reading window. The differences between the lowest and highest mean recall were as large as 0.098

(PW = 2.5 h) and 0.063 (PW = 1.5 h).

Fig. 9. Recall by prediction and reading window (algorithm: Random Forest).

Reading window

Precision 0.25 h 0.5 h 1.0 h 1.5 h 2.0 h 2.5 h 3.0 h 3.5 h 4.0 h

Prediction
window

0.25 h .842 .857 .851 .843 .833 .764 .878 .842 .849

0.5 h .816 .814 .833 .831 .856 .818 .840 .843 .776

1.0 h .841 .823 .753 .847 .775 .876 .868 .829 .787

1.5 h .784 .790 .781 .773 .801 .844 .806 .768 .758

2.0 h .814 .826 .772 .855 .826 .799 .801 .783 .734

2.5 h .801 .808 .781 .780 .784 .800 .751 .738 .778

3.0 h .753 .827 .807 .837 .762 .774 .793 .784 .748

3.5 h .723 .779 .798 .790 .734 .762 .739 .733 .758

4.0 h .718 .782 .777 .761 .739 .741 .787 .758 .718

Coloring by precision:

>.700 >.750 >.800 >.850

Reading window

Recall 0.25 h 0.5 h 1.0 h 1.5 h 2.0 h 2.5 h 3.0 h 3.5 h 4.0 h

Prediction
window

0.25 h .661 .657 .623 .632 .584 .568 .570 .605 .632

0.5 h .665 .628 .614 .619 .611 .579 .567 .581 .553

1.0 h .563 .585 .568 .591 .535 .592 .595 .551 .542

1.5 h .521 .519 .548 .503 .529 .526 .533 .485 .485

2.0 h .533 .560 .554 .526 .506 .518 .519 .508 .521

2.5 h .567 .543 .493 .513 .488 .485 .471 .469 .486

3.0 h .453 .498 .508 .504 .485 .502 .481 .480 .483

3.5 h .503 .490 .472 .485 .465 .466 .485 .486 .477

4.0 h .466 .501 .469 .460 .469 .494 .452 .486 .491

>.500 >.550 >.600

Coloring by recall:

>.650>.450

13

5. Discussion

5.1. Findings and implications

This research experimentally assessed how sliding window selection impacts the performance of

ML-based failure prediction. We found that performance increased for smaller prediction windows

and this relationship was observed for the aggregate metrics accuracy and F-score as well as the

failure-specific metrics precision and recall. However, the best performance was achieved for

prediction windows that were smaller than the minimum time required to devise a maintenance

action (domain experts demanded a PW of at least one hour). Based on this requirement, the best

set of prediction models achieved an accuracy of 0.743, F-score of 0.654, precision of 0.822, and

recall of 0.569 (average over all tested reading windows, Random Forest). The reading window had

a considerable impact on all of the performance metrics but the relationship was not strictly

monotonic. Selecting the smallest reading window did not lead to the best performance.

Specifically, the differences between using the smallest RW and its optimum were 3.5 percentage

points for the precision, 3.2 percentage points for the recall, and 3.0 percentage points for the F-

score. These results suggest that the reading window as a distinct parameter of the prediction model

must be carefully chosen and the interactions between PW and RW should be assessed.

Our study results have important implications for the development of ML-based failure

prediction models. First, our study highlights the decisive role of the prediction window for making

effective predictions. Our experiment provides evidence for smaller timespans enhancing accuracy,

F-score, precision, and recall, and the differences in each metric were considerable even for rather

small changes, although the domain-specific lower bound of the prediction window may not be

breached. This relationship points to a trade-off between prediction performance and reaction time

available for maintenance. In other words, the developer can purposely extend the prediction

window, thus take the risk of lower performance, to gain additional time for the maintenance staff

to implement preventive measures. The additional time might compensate for the loss of

performance. In our experiment, for instance, extending the prediction window from one to two

hours, which would double the time available, led to reductions in the precision and recall of only

two and four percentage points, respectively (across all reading windows).

Second, the reading window is another parameter for which our experiment provides further

insights into how variation affects prediction performance. Our results suggest that RW is of

importance to performance, but its impact is more nuanced than that of PW. Therefore, in

developing prediction models, a much broader range of reading windows should be tested compared

to designs proposed in previous research (Proto et al., 2019; Leahy et al., 2018). Similar to the

prediction window, performance can considerably be improved by varying the reading window;

hence, such additional effort can actually make the difference.

Third, for research streams examining novel approaches to ML-based failure prediction,

our work provides guidance for future studies. Specifically, experimental studies should always

report on the specific sliding windows used, whether and how the windows were manipulated, and

assess both the direct effect of each window and the interaction effects. Moreover, we suggest

14

adopting differentiated performance metrics instead of coarse metrics such as accuracy, and report

results for all practically relevant combinations of windows. This information is essential for

assessing the validity, usefulness, and generalizability of reported results. Administering more

complex experimental designs and providing additional information on outcomes can facilitate the

accumulation of knowledge. This new practice would promote the comparison and integration of

results from single studies, which will then better inform the development of effective ML model

for failure prediction.

5.2. Limitations

The results of the present study should be viewed in light of the following limitations. First, even

though we used two years of operational data for a system failure that was deemed critical by

domain experts, the number of failure instances was rather small. Data cleansing further reduced

this number by removing consecutive failures. Although other types of failures were also relevant

for the domain, the number of observations was insufficient for learning a prediction model.

Second, the ML prediction models were learned from structured machine data but no free-form text

data, such as maintenance reports, was processed. Third, the experiment used a data set for a specific

machine; hence, the results may not necessarily be generalized to other systems. Fourth, we focused

on the relationships between PW, RW and performance, whereas we did not apply optimization

techniques, such as hyperparameter optimization, to maximize prediction performance.

6. Conclusion

Failure prediction is a critical task for the realization of proactive maintenance strategies in the

context of cyber-physical manufacturing systems. Although this task can effectively be automated

using Machine Learning, the development of ML-based prediction models is still challenging due

to the many factors that may affect prediction performance. By focusing on the prediction and

reading windows, our research examines two important but yet understudied factors. While we

found a positive effect of smaller prediction windows on performance, the reading window played

a more nuanced role but was critical for enhancing performance. Decisions about the reading

window should always consider the prediction window and adopt differentiated metrics to paint a

comprehensive picture of performance. Taken together, our findings suggest that the selection of

sliding windows requires increased efforts in the development of failure prediction models. Our

study contributes to this knowledge through a systematic assessment of how purposeful selection

can produce predictions that are more precise (i.e., reducing the number of false positives) and

foretell a greater share of all failures (i.e., increasing the number of true positives).

Declaration of Competing Interests
None.

15

Acknowledgment
This work was supported by the Federal Ministry for Economic Affairs and Energy [grant:

01MT19005D] [grant: 28DE106A18], Germany. We thank Dominique Schubert for providing the

data set.

References

Bonnevay, S., Cugliari, J. and Granger, V. (2020), “Predictive maintenance from event logs using
wavelet-based features: an industrial application”, in Martínez Álvarez, F., Troncoso Lora, A.,
Sáez Muñoz, J.A., Quintián, H. and Corchado, E. (Eds.), 14th International Conference on
Soft Computing Models in Industrial and Environmental Applications (SOCO 2019), Springer,
Cham, pp. 132–141.

Cao, H., Li, X.-L., Woon, D.Y.-K. and Ng, S.-K. (2013), “Integrated oversampling for
imbalanced time series classification”, IEEE Transactions on Knowledge and Data
Engineering, Vol. 25 No. 12, pp. 2809–2822.

Carvalho, T.P., Soares, F.A.A.M.N., Vita, R., Francisco, R.d.P., Basto, J.P. and Alcalá, S.G.S.
(2019), “A systematic literature review of machine learning methods applied to predictive
maintenance”, Computers & Industrial Engineering, Vol. 137.

Chang, C.-C. and Lin, C.-J. (2011), “LIBSVM”, ACM Transactions on Intelligent Systems and
Technology, Vol. 2 No. 3, pp. 1–27.

Chebira, S., Bourmada, N., Boughaba, A. and Djebabra, M. (2021), “Fault diagnosis of blowout
preventer system using artificial neural networks: a comparative study”, International Journal
of Quality & Reliability Management, Vol. 38 No. 6, pp. 1409–1424.

Christ, M., Braun, N., Neuffer, J. and Kempa-Liehr, A.W. (2018), “Time series feature extraction
on basis of scalable hypothesis tests (tsfresh – a Python package)”, Neurocomputing, Vol. 307,
pp. 72–77.

Colone, L., Dimitrov, N. and Straub, D. (2019), “Predictive repair scheduling of wind turbine
drive‐train components based on machine learning”, Wind Energy, Vol. 22, pp. 1230–1242.

Figueroa Barraza, J., Guarda Bräuning, L., Benites Perez, R., Morais, C.B., Martins, M.R. and
Droguett, E.L. (2020), “Deep learning health state prognostics of physical assets in the oil and
gas industry”, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk
and Reliability, Vol. 236 No. 4, 1748006X2097681.

Gokulachandran, J. and Mohandas, K. (2015), “Prediction of cutting tool life based on Taguchi
approach with fuzzy logic and support vector regression techniques”, International Journal of
Quality & Reliability Management, Vol. 32 No. 3, pp. 270–290.

Ho, T.K. (1995), “Random decision forests”, in Proceedings of 3rd International Conference on
Document Analysis and Recognition (ICDAR), IEEE, pp. 278–282.

Hoseini, C., Badar, M.A., Shahhosseini, A.M. and Kluse, C.J. (2021), “A review of machine
learning methods applicable to quality issues”, in Proceedings of the 11th Annual
International Conference on Industrial Engineering and Operations Management (IOP 2021),
March 7-11, 2021, Singapore, IEOM Society International, pp. 1225–1240.

Hosmer, D.W. and Lemeshow, S. (2000), Applied logistic regression, 2nd, John Wiley & Sons,
New York.

Kaparthi, S. and Bumblauskas, D. (2020), “Designing predictive maintenance systems using
decision tree-based machine learning techniques”, International Journal of Quality &
Reliability Management, Vol. 37 No. 4, pp. 659–686.

Khorsheed, R.M. and Beyca, O.F. (2021), “An integrated machine learning: utility theory
framework for real-time predictive maintenance in pumping systems”, Proceedings of the

16

Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 235
No. 5, pp. 887–901.

Kim, N.-H., An, D. and Choi, J.-H. (2017), Prognostics and Health Management of Engineering
Systems, Springer International Publishing, Cham.

Kohavi, R. (1995), “A study of cross-validation and bootstrap for accuracy estimation and model
selection”, in Proceedings of the International Joint Conference on Articial Intelligence
(IJCAI 1995), August 20-25, 1995, Montreal, Canada, Morgan Kaufmann, pp. 1137–1145.

Kolokas, N., Vafeiadis, T., Ioannidis, D. and Tzovaras, D. (2020), “A generic fault prognostics
algorithm for manufacturing industries using unsupervised machine learning classifiers”,
Simulation Modelling Practice and Theory, Vol. 103.

Kusiak, A. and Verma, A. (2012), “A data-mining approach to monitoring wind turbines”, IEEE
Transactions on Sustainable Energy, Vol. 3 No. 1, pp. 150–157.

Leahy, K., Gallagher, C., O’Donovan, P., Bruton, K. and O’Sullivan, D. (2018), “A robust
prescriptive framework and performance metric for diagnosing and predicting wind turbine
faults based on SCADA and alarms data with case study”, Energies, Vol. 11 No. 7.

Leukel, J., González, J. and Riekert, M. (2021), “Adoption of machine learning technology for
failure prediction in industrial maintenance: a systematic review”, Journal of Manufacturing
Systems, Vol. 61, pp. 87–96.

Li, H., Parikh, D., He, Q., Qian, B., Li, Z., Fang, D. and Hampapur, A. (2014), “Improving rail
network velocity: a machine learning approach to predictive maintenance”, Transportation
Research Part C: Emerging Technologies, Vol. 45, pp. 17–26.

Mazzuto, G. and Ciarapica, F.E. (2019), “A big data analytics approach to quality, reliability and
risk management”, International Journal of Quality & Reliability Management, Vol. 36 No. 1,
pp. 2–6.

Montero Jimenez, J.J., Schwartz, S., Vingerhoeds, R., Grabot, B. and Salaün, M. (2020),
“Towards multi-model approaches to predictive maintenance: a systematic literature survey on
diagnostics and prognostics”, Journal of Manufacturing Systems, Vol. 56, pp. 539–557.

MTConnect Institute (2021), “MTConnect standardizes factory service data”, available at:
https://www.mtconnect.org (accessed 17 December 2021).

Nowaczyk, S., Prytz, R., Rognvaldsson, T. and Byttner, S. (2013), “Towards a machine learning
algorithm for predicting truck compressor failures using logged vehicle data”, in Jaeger, M.,
Dyhre, T. and Viappiani, P. (Eds.), Proceedings of the 12th Scandinavian Conference on
Artificial Intelligence, IOS Press, Amsterdam, pp. 205–214.

Ochella, S., Shafiee, M. and Dinmohammadi, F. (2022), “Artificial intelligence in prognostics and
health management of engineering systems”, Engineering Applications of Artificial
Intelligence, Vol. 108.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O. and et al. (2009),
“Scikit-learn: machine learning in Python”, Journal of Machine Learning Research, Vol. 21
No. 9, pp. 1263–1284.

Polycarpou, M.M. and Vemuri, A.T. (1995), “Learning methodology for failure detection and
accommodation”, IEEE Control Systems, Vol. 15 No. 3, pp. 16–24.

Proto, S., Ventura, F., Apiletti, D., Cerquitelli, T., Baralis, E., Macii, E. and Macii, A. (2019),
“PREMISES, a scalable data-driven service to predict alarms in slowly-degrading multi-cycle
industrial processes”, in 2019 IEEE International Congress on Big Data (BigData Congress),
IEEE, pp. 139–143.

Prytz, R., Nowaczyk S., Rögnvaldsson, T. and Byttner, S. (2015), “Predicting the need for vehicle
compressor repairs using maintenance records and logged vehicle data”, Engineering
Applications of Artificial Intelligence, Vol. 41, pp. 139–150.

17

Rocklin, M. (2015), “Dask: parallel computation with blocked algorithms and task scheduling”,
paper presented at 14th Python in Science Conference (SciPy 2015), July 6-12, 2015, Austin,
Texas, USA.

Susto, G.A., Schirru, A., Pampuri, S., McLoone, S. and Beghi, A. (2015), “Machine learning for
predictive maintenance: A multiple classifier approach”, IEEE Transactions on Industrial
Informatics, Vol. 11 No. 3, pp. 812–820.

Tharwat, A. (2021), “Classification assessment methods”, Applied Computing and Informatics,
Vol. 17 No. 1, pp. 168–192.

Wang, J., Li, C., Han, S., Sarkar, S. and Zhou, X. (2017), “Predictive maintenance based on
event-log analysis: A case study”, IBM Journal of Research and Development, Vol. 61 No. 1,
121–132.

Zonta, T., da Costa, C.A., da Rosa Righi, R., Lima, M.J. de, da Trindade, E.S. and Li, G.P.
(2020), “Predictive maintenance in the industry 4.0: a systematic literature review”,
Computers & Industrial Engineering, Vol. 150 No. 6.

