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Abstract

We characterize how a social planner can design electronic service allocation when the desired service quality
of customers and the actual service quality of providers are private information. Because private information
is present in our analysis, we derive a second-best allocation mechanism that satisfies incentive compatibility,
individual rationality and budget balance. While using the first-best outcome as a benchmark, we study
the efficiency properties of the associated optimal allocation rules. In a set of simulation experiments
with uniformly and normally distributed private information, we find that the asymptotic efficiency of the
second-best mechanism is bounded away from 100% even for a large number of customers and providers.
This finding indicates that the agents in our model do not become informationally small as the market size

increases.
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1. Introduction

The increasing number of third party vendors offering electronic services has stimulated the growth
of information technology (IT) outsourcing in many organizations (Chang and Gurbaxani, 2012). Firms
outsource their applications to these vendors that provide access to computing resources at a specified
quality of service (QoS) such as availability, throughput, and execution time (Gartner, 2014). Advances in
IT facilitate the substitution of traditionally static and long-term relationships by flexible contracts of shorter
duration, with Cloud computing being the most recent manifestation of these advances (Armbrust et al.,
2010). Recently, marketplaces for Cloud services have emerged, for instance, the Avnet Cloud Marketplace
(2016). Such marketplaces might be administrated by government authorities or large corporations, who
aim at a socially optimal allocation. The overall objectives are to serve the customers and to best utilize
geographically remote data centers. This scenario dates back to grid computing, a predecessor of Cloud
computing, for which the social welfare properties have been studied in prior research (e.g., Schnizler et al.
(2008); Stosser et al. (2010)).

On markets for electronic services, multiple providers offer their services to multiple customers, who
attempt to agree on an exchange of the services for money. However, for electronic services it is not viable
to solely account for the price as the single non-functional property because customers usually have different
requirements for the quality characteristics (O’Sullivan et al., 2002). On the other hand, service providers
use the QoS for differentiation from the competition. Under consideration of the QoS, determining the
optimal service allocation is difficult for two reasons. First, each customer’s desired QoS is known only to
that customer and each provider’s actual QoS is known only to that provider. The social planner observes no
one’s desired or actual QoS and no trader observes the QoS of any other trader. Second, the allocation
mechanism must guarantee four specific economic properties, which are common in optimal auction
design (Myerson, 1981): (i) The mechanism must provide adequate incentives for the participants because
strategic individuals may misreport their true preferences (incentive compatibility), (ii) the mechanism
must not force individuals to participate in the market (individual rationality), (iii) the mechanism must
omit any independent intermediary but facilitate distributed decision-making among the participants (Egri
and Vancza, 2013); this requirement implies that all payments must be distributed among the participants
(budget balance), and (iv) the mechanism must maximize the social welfare (ex post optimality). Standard
impossibility theorems from mechanism design assert that meeting all four requirements simultaneously is
not attainable (Laffont and Maskin, 1979; Myerson and Satterthwaite, 1983). Therefore, the social planner
must decide about a viable tradeoff of these requirements. One compromise in the presence of private
information is to derive a second-best mechanism and compare its outcome to the associated first-best
outcome that would arise if all information were publicly known (e.g., Arya et al. (2015); Babich et al.
(2012)). A second-best mechanism is one that maximizes the expected social welfare among all incentive
compatible, individually rational, and budget-balanced mechanisms (Borgers, 2015).

Current approaches for integrating QoS into electronic service allocation use auction mechanisms to
elicit QoS and price attributes for determining the optimal allocation (Bapna et al., 2008; Blau et al., 2010).
However, classic auction theory is based on two assumptions: First, private information about reservation

values exists on the customer side of the market only, while double-sided information asymmetry is generally



not considered (Myerson, 1981). Second, the offered quality is fixed prior to provider selection (Bichler and
Kalagnanam, 2005). Online auctions that use quality attributes apart from the price also affect the auction’s
outcome throughout the allocation process (Bockstedt and Goh, 2011). In settings with double-sided private
information, it is not clear that the QoS actually offered by a provider will match the desired QoS of the
customer. More specifically, when every provider offers a service of distinct QoS and every customer has
distinct needs, facilitating allocations between the right pairs of traders is critical for maximizing the total
welfare of a market. Therefore, the privately known desired QoS of customers and the privately known actual
QoS of providers must be internalized into the allocation mechanism. However, how this integration affects
the allocation outcome is still not known.

We address the problem of optimal service allocation on double-sided markets with private information.
We draw on mechanism design to derive a second-best allocation mechanism for electronic services. We
analyze a market where gains from trade that can be generated depend on the privately known QoS of the
matched customers and providers. While deriving the optimal allocation rules from the perspective of a social
planner, we study the efficiency properties of the set of mechanisms that satisfy incentive compatibility,
individual rationality and budget-balance. To identify these optimal rules, we focus on direct revelation
mechanisms by invoking the revelation principle (Myerson, 1979) in a first step. Then, the issue of real-world
relevance is addressed by the implementation through position auctions. Afterwards, we report on a set of
simulation experiments.

The objectives of this research are to: (i) derive a second-best mechanism for allocating electronic
services with private information about QoS and (ii) evaluate this mechanism in a set of experiments to
study its efficiency properties. Our proposal is informed by the work of Johnson (2013), who derived
a profit-maximizing matching mechanism with double-sided private information. While the approach
examined by Johnson (2013) focuses solely on mechanisms that maximize the expected profit of the
auctioneer, we derive the optimal allocation rules from the perspective of a social planner that seeks to
maximize the expected social welfare. We are particularly interested in studying the efficiency properties
of the second-best allocation mechanism. In our prior research (Widmer et al., 2013), we designed a
mechanism for a specific allocation problem in a Cloud computing scenario by integrating energy efficiency
as a particular QoS into the preferences of market participants. We advance this mechanism by (i) making
customers’ desired QoS and providers’ actual QoS intrinsic parts of the mechanism and (ii) accounting for
the four economic properties in the presence of double-sided private information.

The remainder of this article is organized as follows. In section 2, we discuss the approaches to
QoS-aware electronic service allocation. In section 3, we describe our mechanism for service allocation with
private information and study its efficiency properties (section 4). In section 5, we report on the experimental

evaluation and discuss our findings. We provide our conclusion in section 6.

2. Literature review

We discuss extant literature on mechanism design and examine the integration of QoS as an intrinsic
part of the mechanism. The field of mechanism design studies how privately known preferences of multiple

individuals, also called agents, can be aggregated toward a social choice (Nisan and Ronen, 2001). For



making customers’ desired QoS and providers’ actual QoS an intrinsic part of the mechanism, research
concerned with multidimensional auctions and matching mechanisms is of particular interest.

A basic procurement auction with two dimensions, namely price and quality, was proposed by Che
(1993). In this auction a single customer announces a publicly known scoring rule to multiple providers that
are competing for winning a project. Price and quality preferences are aggregated into the utility function
of each participant. The outcome is optimal for the customer if she can commit to a scoring rule in her best
interest. This model was extended by Branco (1997) by integrating correlated cost types of the providers
into the utility functions. The objective function of the single customer is the maximization of the social
welfare instead of the customer’s pay-off as in Che’s model. Branco’s approach shows that the customer
needs to use a two-stage auction to implement the optimal outcome: the customer (i) selects one provider,
and (ii) bargains to readjust the level of quality to be provided. However, their model is concerned with a
single provider only and does not consider double-sided competition.

Specific auctions for the procurement of electronic services with multiple attributes have also been
studied. Bichler and Kalagnanam (2005) proposed solutions to winner determination problems in
multidimensional auctions with multiple sourcing and configurable offers. They examined the impact of
several business rules such as propositional logic for knowledge representation, that need to be imposed on
the winner determination problem in order to obtain an acceptable supply from multiple providers. Although
this mechanism maximizes the customer’s utility in experimental settings, their approach does not examine
the effect of double-sided competition under private information on both sides of the market.

A multidimensional combinatorial auction mechanism for trading electronic grid services among
multiple providers and customers was presented by Schnizler et al. (2008). The proposed auction maximizes
the social welfare and satisfies incentive compatibility in equilibrium but requires an outside subsidization
because it runs a permanent deficit in budget. In our approach, we resort to mechanisms that maximize the
expected social welfare to the extent that budget balance can be achieved.

The mechanism designed by Blau et al. (2010) is a multidimensional procurement auction for trading
so-called composite electronic services. A composite service is a set of several elementary services and
thus represents a domain-specific bundle. Multiple service providers offer composite services to a customer
who specifies requirements through a bidding language that considers multiple QoS attributes. The proposed
mechanism is incentive compatible in weakly-dominant strategies, individually rational, and optimal ex post,
but limited to a single-sided market environment.

Mechanisms of double-sided private information have been subject of inquiry in economic theory.
A seminal piece of work stems from Myerson and Satterthwaite (1983), who studied efficient market
mechanisms for bilateral trading when reservation values are private information. This model was then
extended by McAfee (1991) by integrating a continuous quantity parameter into both traders’ private
reservation function. Efficiency requires the mechanism to decide when and how much of a certain
commodity shall be traded. The approach of Myerson and Satterthwaite (1983) is similar to our work,
though limited to bilateral trading, whereas we consider a setting with multiple customers and providers.

The bilateral mechanism of Myerson and Satterthwaite (1983) was generalized by Gresik and

Satterthwaite (1989) to allow for multiple customers and providers with double-sided private information.



It was found that market inefficiency disappears as the number of traders becomes large. Yet in this model,
the optimal match of customers and providers with privately known QoS cannot be determined because it
does not matter which customer trades with which provider. However, in settings with privately known QoS
on both market sides matching the right pairs of traders is crucial to ensure that the highest possible match
surplus can be elicited by the mechanism.

In general, double-sided matching mechanisms may be used to determine the allocation of electronic
services. In these mechanisms, customers and providers only produce mutual surplus if they are matched
together. For a setting of double-sided private information, Johnson (2013) invoked the revelation principle
to derive the optimal matching and payment rules from the perspective of a profit-maximizing intermediary.
One way to implement this mechanism is with position auctions, in which multiple customers and providers
simultaneously submit their bids to the mechanism, the bids are ranked against each other and the individuals
are allocated accordingly. Johnson (2013) studied two different formats used in position auctions, namely
the winners-pay format and the all-pay format. In the winners-pay format only matched individuals pay their
bid to the auctioneer. The all-pay format requires all individuals to pay their bid, regardless of a successful
match. However, Johnson focused solely on maximizing the auctioneer’s profit. In our work, we devise
the optimal allocation rules from the perspective of a social planner that seeks to maximize the expected
gains from trade. Unlike Johnson, we are particularly interested in studying the efficiency properties of the
second-best set of mechanisms for electronic service allocation.

In summary, the review of the extant literature corroborates that private quality information has not been
sufficiently internalized into double-sided electronic service allocation. Our approach is informed by the
work of Johnson (2013) and extends it by (i) deriving the optimal allocation rules from a social welfare

perspective and (ii) studying the efficiency properties of these optimal rules by simulation.

3. Formal framework

This section introduces a framework providing definitions and formal notations for the design of a
double-sided service allocation mechanism. The framework is based on the model of Johnson (2013) but

focuses on the social welfare properties of the mechanism for optimal customer-provider matching.

3.1. Agents

The set of customer agents is given by 2% with N = |/

, and the set of provider agents is o/p with
M = |.o7p|. Each customer agent a; € </ requests a single, standardized electronic service (unit demand),
while each provider agent b; € .o/p offers a single electronic service (unit supply). Standardized services are
electronic services of equal functional properties. The maximum number of contracts between a; and b; is
given by K = min{M,N}. Assume K > 2.

3.2. Private information

In the following, the terms quality and QoS are used interchangeably. Each customer agent privately
learns the desired quality 6; that she has assigned to the requested service. Desired quality is drawn from

a probability density function f(6;), being strictly positive on [0,8] with cumulative distribution function



F(6;). On the supply side, each provider agent privately learns the actual quality o; that she can offer
for the electronic service. Actual quality is drawn from a probability density function /(o;), being strictly
positive on [0, 6] with cumulative distribution function H(o;). Let 6 = (6y,...,0y) and 6 = (01,...,0y) be
the private information vectors of all customer agents and provider agents, respectively. The vectors 0_; =
(61,...,6i-1,0;41,...,6y) and 6_; = (01,...,0/_1,0j41,...,0y) specify the private information except for
a; respectively b;. Further, let Eg , 5 denote the expectation over all private information conditional on
customer agent ¢;’s information, and let Eg s ; denote the analogous expectation for provider agent b;. The

unconditional expectation over all private information is denoted by [E.

3.3. Valuation and cost

Customer agent g;’s valuation for consuming a service is given by v(6;,0;). This valuation can be
interpreted as a;’s maximum willingness to pay for the service. It depends on g;’s desired quality, as well
as on the difference between its own desired quality and provider b;’s actual quality. The definition of
v(6;,0;) captures the fact that provider agent b; does not know ¢;’s willingness to pay. We focus on customer
valuation functions that are non-monotonic in the quality offered by the provider. For instance, a customer
may prefer a service with medium over high computational capacity. A high-capacity service is well able
to process many simultaneous requests from the customer’s application that uses this service. If, however,
this application does not have enough computational power or resources, the application will fail to answer
these simultaneous requests in due time. This leads to higher buffering in the application and thus longer
response times. Thus, a customer’s valuation must take into account the application that uses the service and
the tradeoff between being idle or buffering heavily (Hang and Singh, 2010). Therefore, we assume that any
mismatch in desired quality and actual quality creates adjustment problems for the customer agent. That is,
v(6;,0;) is maximized when the supplied quality and the desired quality are equal (i.e., when 6; = ;). By
assumption, the maximal value is increasing in 6;.

On the supply side, each provider agent b;’s provision cost ¢(6;,0;) for its service depends on its actual
quality and on the difference between its own actual quality and the customer agent’s desired quality. This
definition suggests that customer agents do not know the provision costs of provider agents. If a provider
produces a quality lower than the quality desired by a customer, this provider incurs higher cost from not
fulfilling the requirements. If, in contrast, a provider maintains higher quality than desired, her cost increases
due to idle resources (Greenberg et al., 2009). Hence, we assume that c(6;,0;) is minimized when o; = 6
and that the minimal value is increasing in ¢;. This assumption captures the fact that a mismatch in actual
quality and desired quality creates higher provision costs resulting from after-sales customer service cost and

missed opportunity cost. Both v(6;,0;) and ¢(6;, 5;) are assumed to be thrice differentiable.

3.4. Expected utilities

Similar to common auction settings, we assume risk-neutral agents with quasi-linear utility functions.
For describing an allocation of a service we use a decision variable. Let x;j(6,0) € [0,1] denote the
probability that a service is allocated from provider agent b; to customer agent a;. For example, if

x11(0,0) = 1, the service is provided by provider agent b; and consumed by customer agent a; in the



final allocation. For ease of exposition, we use vectorized function arguments without further reference and,
for example, write x;;(6;,60_;,0) =x;j(01,...,0y,01,...,0y) in any appropriate context.

Using this notation, each customer agent’s expected utility function is given by

M
U ( ]EG, [Z 6176] -xl] 9176—17 ) IC(eive—iao) ) (1)
j=1

where #c(6;,0_;,0) is the monetary transfer made by a; conditional on all other agents’ private

information. Similarly, the expected utility of provider agent b; is given by

Up(oj) =Ee o ; |tr(0,0;,0-) = ) c(6:,07)x:(0,0;,0-j)|, (2)

'MZ

i=1

where tp(6,0;,0-_ ;) corresponds to the monetary compensation provider agent b receives for providing

a service to customer agent a;.

3.5. Incentive compatibility and individual rationality

We characterize the proposed mechanism in terms of a direct revelation mechanism (Myerson, 1979).
In a direct revelation mechanism all agents are induced to reveal their private information (i.e., desired and
actual quality respectively) to the mechanism, which then dictates the allocation of services and the respective
monetary transfers. In equilibrium, all agents will report truthfully. Hence, a direct mechanism is defined by
the decision variables, as well as the payments for service allocation. Formally, a direct mechanism is a set
of functions {x;;(0,0),1c(0,0),1p(6,0)} for all agents a; and b;.

In order to determine the optimal equilibrium outcome from among all possible mechanisms, we adopt
the standard approach in mechanism design theory by invoking the revelation principle (Gibbard, 1973;
Harris and Raviv, 1981; Myerson, 1981). The application of the revelation principle allows us to restrict our
attention to incentive compatible direct mechanisms without loss of generality. Formally, the mechanism is

(Bayesian) incentive compatible if and only if for each customer agent’s reported desired quality 6 #+ 06

M
Uc(8) > o, G[Z v(6,0,)x,/(8,0-i,0) —1c(8,6-1,0)|. 3

and for each provider agent’s reported actual quality & # o

=

Up(Gj) > E9767j tp(@,&,G_j) — C(G,‘,Gj)x,'j(e,é,c_j) . @)

i=1

In addition to incentive compatibility, the mechanism must satisfy individual rationality, so that each

agent willingly participates in the mechanism. This constraint ensures that conditional on its private



information every agent imputes an expected utility from participating in the mechanism that is greater
than or equal to the utility of its outside option. Formally, the mechanism is individually rational if and only
if Uc(6;) > 0 for customer agent a; and Up(0;) > 0 for provider agent b;.

3.6. Optimization problem

This research takes the perspective of a social planner, who is interested in distributing all payments
among the agents. Hence, the ultimate objective of the mechanism is the maximization of the expected
social welfare subject to budget balance. The expected social welfare is defined as the sum of all agents’
expected utilities. The mechanism balances the budget if all expected transfers made among the agents add

up to zero. That is, (ex ante) budget balance is defined as

N 0 M [
Z/ E(Liﬁ[tc(eiv9—i76)]f(9i>dei_Z/ Eo.6 ;[tr(6,0),0-;)]h(0))do; =0. (5)
i=170 j=170

This constraint is necessary because the mechanism must not depend on any external source of funds.
By accumulating the expected utilities in (1) and (2) over all agents and substituting for the constraint of

budget balance (5), we get the expected social welfare of the service allocation as follows:

N 0 M G
Y. [ vctons(e)ae + Y. [ Up(o)i(o;)do;
i=1 j=1
N 0 M
:Z/O Ee,i,o Z 917(7] Xij 9176717 ) tC(9i79*i7o-):|f(6i)d6i
i=1 Jj=1

M G N
+ Z/O EO,(L,‘ [l‘P(G,Gj,G—j) - ZC(Gi,Gj)X,‘j(G,Gj,G_j)} h(oj)d(yj

» L

The mechanism’s objective is the maximization of the expression obtained in (6) over all agents.

M
Y. (%(68:,0;) —(6:,0,))(6,) . ©)
1j=1

Mz

Therefore, the mechanism faces the following optimization problem:

N M
maxE[x Y. (v(6:,07) — (61, 57))x (6, o)} 7

which must be solved subject to incentive compatibility, individual rationality and the feasibility
constraints 0 <Y ;x;;(0,0) < 1 forall a; and 0 < Y, x;;(8,0) < 1 for all b;.
4. Pricing mechanisms

In this section, we first characterize incentive compatibility and individual rationality, followed by

defining the mechanism’s allocation rule and expected monetary transfers. Then, we specify conditions



sufficient for this mechanism to maximize the expected social welfare. Finally, we provide an illustrative

example for a market with uniformly distributed private information.

4.1. Characterizing incentive compatibility and individual rationality

According to the Myerson-Satterthwaite-Theorem (Myerson and Satterthwaite, 1983), it is impossible to
reach ex post efficiency when incentive compatibility, individual rationality and budget balance are required.
Although other collective objective functions could be considered, this article focuses on the problem of
maximizing the expected social welfare, which weights utility gains from each type of customer the same
as utility gains from each type of provider. We adopt the approach of Myerson and Satterthwaite (1983), as
well as Gresik and Satterthwaite (1989), and define the following two functions. Let the virtual valuation of

customer agent a; be given by

1 —F(Qi) av(ei, Gj)
f(6:) a6

ve(6i,05) =v(6;,05) — (®)
The virtual valuation function expresses the strategic behavior of customer agents in an indirect
mechanism implementation. Since v(6;,0;) is maximized for 6; = o; and increasing in the maximal value,
Vc(6;,0;) is strictly smaller than the actual valuation. Hence, customer agents have an incentive to understate
their true valuation. They behave strategically in this fashion in order to influence their transaction prices.

For provider agents, let the virtual provision cost be defined by

H(o;) dc(6;,0))
h(o;)  do;

vp(6;,0j) =c(6;,0/) + . 9)

The virtual provision cost reflects the strategic behavior of provider agents in an indirect mechanism
implementation. Since ¢(6;,0;) is minimized when o; = 6; and increasing in the minimal value, the virtual
cost is strictly greater than the actual provision cost. Thus, a provider agent has an incentive to overstate
her true cost. In such a case, provider agents try to raise their transaction prices for the offered service by
reporting a higher provision cost.

These virtual reservation functions play a crucial role in deriving the second-best mechanism for
electronic service allocation. The following Lemma characterizes the set of all incentive compatible and

individually rational mechanisms for our allocation problem.

Lemma 1. Let x;;(60,0) be the probability that provider agent bj is allocated to customer agent a;. Then
transfer functions tc(6,6) and tp(0,0) exist such that {x;;(0,0),1c(0,0),tp(0,0)} is incentive compatible
and individually rational if and only if Eg_, 5[x;;(6;,-)] is non-decreasing, Eq 5 _[x;;(-, 0;)] is non-increasing

and

M=
Mxs

E[Y Y (ve(6i.0)) — vr(8;:6)x,(6,0)| > 0. (10)

Il
_
~
Il
_
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Proofs of this and all other Lemmas and Theorems are provided in the Appendix A.

Lemma 1 is crucial for constructing ex ante optimal mechanisms because it states that if the decision
variables x;;(0, o) satisfy the monotonicity properties, as well as inequality (10), then transfers 7¢(6, ) and
tp(0,0) exist, such that {x;;(0,0),7c(6,0),tp(0,0)} is an incentive compatible and individually rational
mechanism. Notice that this framework explicitly allows for randomized transfers. However, in the presence
of risk-neutral agents, we can use deterministic transfers equal to the corresponding expectations without
loss of generality.

Apart from the condition for incentive compatibility and individual rationality, inequality (10) in
Lemma 1 is the ex ante budget balance condition. The next Lemma establishes that the mechanism distributes

all payments among the agents such that no external source of funds is necessary.

Lemma 2. Any incentive compatible, individually rational mechanism satisfies ex ante budget balance.

4.2. Allocation rule

The definition of an appropriate allocation rule with transfers for our mechanism design problem requires
some additional notation. The difference in virtual valuation and virtual cost is defined as y(6;,0;) =
Vc(6;,0;) — yp(6;,0;). The reserve functions of customer agent a; and provider agent b; are respectively

given by

o;€1(0,0]:yv(6;,0;) >0} if {o;:y(6;,0;)>0}=£0
Reey — |70 {01€ 001 w00 >0} it {0} w(0,07) 20} £ o
0 otherwise,

inf{6; € 0,é : 6;,,0;) >0 if 0;: 6;,0;) >0 0
k(o) — LG E10.8]:(61,0) 2 0) it {8,:¥(6.,0) 20} # )
otherwise.

Reserve function R¢(6;) is used by a customer agent to identify the worst possible provider agent (i.e.,
the one with the highest actual quality) under the constraint y(6;, ;) > 0, given her own desired quality 6;.
Reserve function Rp(0;) is used by a provider agent to identify the worst possible customer agent (i.e., the
one with the lowest desired quality) under the same constraint, given her own actual quality ;. In addition,
the lowest possible desired quality among all customer agents and, respectively, the highest possible actual

quality among all provider agents are defined as

6, =inf{6; €[0,6]: {c;: y(6;,0;) >0} #0}} and (13)
6 =sup{o; €(0,6]:{6;: y(6;,0;) >0} #0}}. 4)

The customer agent with desired quality 6; is the worst-off customer agent in the market, while the

provider agent with actual quality G; is the worst-off provider agent. Let pg(6;) = |{6 € 0 : 6, > 6,}| be the
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rank of desired quality 6; within the vector of all customer agents’ desired qualities 6 = {6,...,6y}. Define

Po(0;) similarly for provider agents. The quantity

(N—1)!

v (6r) = (N—k)(k—1)!

F(6)"*(1-F(6:)" (15)
gives the probability that customer agent’s desired quality 6; has rank k within vector 8. Define w,’: (o))
similarly for provider agents. Further, let f()(-) and ) (-) be the probability density functions of the k-th
order statistics of customer agents and provider agents respectively. The associated cumulative distribution
functions are denoted by F(-) and H (+).
Consider the following direct revelation mechanism. The Truncated Positive Assortative Allocation

(TPAA) mechanism is defined by the allocation rule

1 if 0;) = o;)=k and 6;,0;) >0,
1i(6,0) = Po(6)) = po(0i) v(6:,0)) (16)
0 otherwise

with expected payments of customer agents

y fel®) ) Qv(s,r)
_ Cra. - ’
— ]; wy (91)/0 v(6;,r)hg (r)dr / Z Wk / s ho (r)drds (17)

and expected compensation for provider agents

-0

N X WPl dc(r,s)
Tr(o) = Yu () / -

6; K -0
el dr+ [ P /
cropfipars [“Ywlo) [ S

fuy(r)drds. (18)

The allocation rule of the TPAA mechanism captures two distinct features. First, a service is allocated
from a provider agent to a customer agent if and only if the rank of a@;’s desired quality is equal to the rank of
b;’s actual quality. This rule implies that the service from the provider agent with the highest actual quality
is allocated to the customer agent with the highest desired quality, the second-highest, and so on. Such
mechanisms are positively assortative (Shimer and Smith, 2000). Second, service allocation from a provider
agent to a customer agent takes place if and only if the difference in @;’s virtual valuation and b;’s virtual
provision cost is positive.

Notice that the associated transfers are the same as the transfers (A.8) and (A.9) derived in the proof
of Lemma 1, but evaluated at the allocation rule (16). These transfers are similar to the payments in other
mechanism design settings. Customer agent’s expected payment is her expected surplus less her cost that
incurs due to information revelation (informational rent). Similarly, provider agent’s expected compensation
equals her expected surplus plus a term she receives for revealing her information. Notice that transfers are

made, even if no service is allocated.
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4.3. Maximizing the expected social welfare

In this section, we show that the allocation rule in equation (16) maximizes the expected social welfare
among all incentive compatible and individually rational mechanisms characterized in Lemma 1. First, we
demonstrate that the monotonicity properties required in Lemma 1 are satisfied. Then we specify conditions
for the TPAA mechanism to maximize the expected social welfare.

Taking the partial derivative of the expected allocation probability and evaluating this variable at the

allocation rule (16) for customer agents gives

8 a RC(GI)
T&Ee,i.,o[xij(eiv')] — 86”;14/% 9,-)/0 h (r)dr
Jd & ¢
=38 ];wk (6:)H 1) (Rc(6;))
K o€ o K /
=) W"(_ )H<k)<Rc<ei>>+ Y wE (6 (Rc(6:))R(6). (19)
k=1

Observe that the second summand in (19) is always positive because R¢(6;) is increasing. For the first
summand we use the same argument as in Johnson (2011): Fix index k*. Then increase all terms above k > k*
where dw$ (6;)/06; is negative, and decrease all terms below k < k* with dw$ (6;)/96; being positive. By
the binomial theorem, we have Y&, w((6;) = 1, and thus Y&, 9w (6;)/96; = 0 (Abramowitz and Stegun,

1972, p. 10). Hence, equation (19) is estimated as follows:

a K BWC(G,-)
ﬁEB_[G[xij(eia')] >k; 591' H 1 (Rc(6;))
K onwC(6;
>H(k*)(RC(9i>)Z M;ke( ) =0, (20)
k=1 i

where the last inequality follows from the binomial theorem. Therefore, Eg , 5[x;;(6;,-)] is increasing in

6;. For provider agents allocation rule (16) yields

9 I & 6
3, Eoo .0l =5 Yowlop) [ fig(riar

J P(0;)

>

= aTyjk:lwf(crj)(l — Fpy(Rp(05)))

d 8wf(0'j) o p '
Fio(Rp(07)) + Y. wE (0)) i) (Rr())Rb(0) ). 1)
k=1
Notice that Rp(0;) is increasing. Labeling the indices k as k* and using a similar argument as above
shows that the expression in brackets in (21) is always positive. Therefore, the whole term is negative, and

thus Eg 5_;[xi;(-,0;)] is decreasing in o;. This proves that the monotonicity properties of Lemma 1 are
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satisfied. In addition, the allocation rule also fulfills constraint (10) because the rule is positive assortative as
long as the difference between virtual valuation and virtual cost is positive.

The following Theorem summarizes the main results.

Theorem 1. Let customer agent a;’s valuation v(6;, 0;) be maximized when 6; = o; with the maximal value
increasing in 6;. Further, let v(6;,0;) be supermodular in both arguments and concave in 6. Let the

distribution function F () be log-concave and let

3 O
?6.9)
86?8@-

f(@,) 0 8v(9i,6j)
I—F(Q,') = 89,10g< an )

(22)

On the supply side, let provider agent b;’s provision cost c¢(6;,0;) be minimized when c; = 6; with the
minimal value increasing in ©j. Further, let c(6;,0;) be submodular in both arguments and convex in Gj.

Let the distribution function H(-) be log-concave and let

830(91'76.1') <0,
891'80]2
h(Gj) 0 aC(Gi,Gj)

Then, the TPAA mechanism maximizes the expected social welfare among all incentive compatible and

individually rational mechanisms. Further, budget balance is satisfied.

Theorem 1 specifies conditions sufficient for the TPAA mechanism to maximize the expected social
welfare, subject to the incentive compatibility and individual rationality constraints. The TPAA mechanism

is a direct revelation mechanism in which:

1. The mechanism induces each customer agent to submit her desired service quality 6; and each provider

agent to submit her actual quality o; to the mechanism.
2. The mechanism sorts all quality values on both sides in descending order (i.e., positively assortative).

3. The mechanism allocates the customer agent with the highest desired quality to the provider agent
with the highest actual quality, the second highest, and so on, but excludes all allocations for which

the difference in virtual valuation and virtual cost is negative.

4. All agents pay/receive their associated expected transfers, regardless of whether they are allocated.

4.4. Illustrative example

We provide an example to illustrate the design of the TPAA mechanism. Suppose each customer agent’s

desired quality 6; and each provider agent’s actual quality o; are identically and uniformly distributed over
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the unit interval. All customer agents have valuations of v(6;,0;) = 1 +1/6; — (6; — 0;)? and all provider
agents have provision costs of ¢(6;,0;) = O'f + (6; — 6;)%. These functions satisfy the requirements in
Theorem 1. Since all private information is independently drawn from the uniform distribution, the densities
are f(6;) = h(o;) = 1, with cumulative distributions F (6;) = 6; and H(0;) = o over the interval [0, 1]. Given
these functions, the virtual valuation of customer agents is y<(6;,6;) =v(6;,0;) — (1—6,)(20;—26;+ 2%/@),
while the virtual cost of provider agents is Y’ (6;, 6;) = c(6;,0;) + 0;(40; — 26;).

Figure 1 illustrates the relationship between actual and virtual reservation values of the agents. The
fact that a customer’s virtual valuation is less than or equal to her actual valuation indicates that she will
in general have an incentive to understate her desired quality in order to favorably influence the transaction
price. The customer with the strongest incentive to understate her desired quality is the one with the highest
desired quality. However, since this customer will generate more social welfare (i.e., gains from trade) than
a customer with a low desired quality, an efficient mechanism will want the highest quality customer to be
matched with a provider of a lower actual cost whenever doing so is efficient. Hence, the virtual valuation
of the highest quality customer is equal to her actual valuation. To ensure that this customer reports her
desired quality truthfully, the mechanism must make lower reports unprofitable. It does so by lowering the
probability that a customer with a lower desired quality will be matched with a lower probability. This
reduced probability is inefficient but the loss in social welfare is smaller from reducing the probability of
trade for customers with low desired qualities than with high desired qualities. The reverse explanation
applies to the pattern observed for providers. Hence, this example illustrates what the revelation principle
does: It embeds the strategic behavior of the agents in the mechanism so that in equilibrium the agents no

longer engage in strategic misrepresentation.

2 — 2 ‘ 7
T actual cost J
.7 - - - virtual cost K
151 - -7 - 1.5+ // 1
Ve s , /
- g 7/
=1 L 7 Vi
2 ‘ 2 J
;g 1 K | 8 1
E K
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/
0.5 | / — 0.5 -
/) actual valuation . ’
K - - - virtual valuation -7
0 L \ \ \ 0 \ \
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desired quality 6; actual quality o;

Figure 1: Actual and virtual reservation functions of customer agents (left) and provider agents (right).

Because private information is present in our analysis, the TPAA mechanism is a second-best mechanism
(Borgers, 2015). Its match condition is based on the difference of the agents’ virtual reservation functions.
The associated first-best mechanism assumes public information among all agents. In the first-best case,
matching always occurs as long as a customer agent’s actual valuation exceeds a provider agent’s actual

provision cost. The boundaries for successful matching in the first-best and the second-best mechanism are
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shown in figure 2 for uniform random variables (left) and normal random variables (right). The shaded
area in solid green contains the eligible quality pairs within the domain [0, 1] x [0,1] that warrant service
allocation in the first-best mechanism. The dotted region within the solid area contains all quality pairs that
are allocated in the second-best mechanism. The significantly smaller area in the second-best case illustrates

the distortion due to the presence of private information concerning service quality.
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Figure 2: The mechanism’s first-best and second-best boundaries for uniform (left) and normal (right) distributions.

Since the TPAA mechanism is positively assortative, it converges to deterministic quantile matching
(Johnson, 2011). Therefore, in the limit as K — oo, the empirical quantile function is asymptotically
equivalent to the k-th order statistic (van der Vaart, 2000). This means that 6 — H~!(F(8)) in the allocation
rule, and therefore 6 — 6 for uniformly distributed 6 and o on [0, 1]. Solving y(6,0) > 0 gives the lower
bound a = 0.1157 and the upper bound b = 0.7604. Hence, in the limit all quality realizations less than a

and greater than b are truncated by the second-best mechanism. Its efficiency as K — oo is given by

(24)

since f(¢) = 1 for the uniform distribution. Therefore, the TPAA mechanism’s asymptotic efficiency for
uniformly distributed quality realizations is 68.59%. The numerical simulation in section 5.2 confirms this

upper bound (cf. figure 3). In section 5.3, we discuss the insights that can be obtained from this result.

5. Experimental evaluation

This section reports an experimental evaluation of the TPAA mechanism developed in this proposal. We

describe the setup, report the results, and discuss the findings.

16



5.1. Experimental setup

The experimental setup is based on the setting used in the example presented in section 4.4. All customer
agents used valuation functions v(6;,0;) = 1+ +/6; — (6; — 0;)?, and all provider agents had provision cost
c(6;,0)) = O'f + (6; — 0;)*. The agents’ private information was described by random variables in two
variants: In the first setting, both customer agents’ desired qualities and provider agents’ actual qualities
were drawn from the uniform distribution over the unit interval; that is, 6; ~ 6; ~ U (0,1) for all agents ;
and b;. In the second variant, desired and actual qualities were drawn from the normal distribution truncated
to the unit interval with mean p = 0.5 and standard deviation o = 0.1; that is, for all agents a; and b; in
the second setting, 6; ~ 0; ~ N (0.5,0.01). For each variant, the experiment was conducted 10° times, and

average values were calculated. The steps were:

1. For each agent desired and actual quality realizations were drawn independently from the respective

random distribution (uniform and normal).

2. The mechanism arranged these quality realizations positive assortatively and allocated the services if

the difference between virtual valuation and virtual cost was non-negative.
3. Once an allocation was arranged, the allocation surplus was calculated as v(6;,0;) — c(6;,0;).

4. The mechanism calculated the sum of all allocation surpluses as defined in the maximand of (7).

In this article, we took the social welfare achieved by the first-best mechanism as a benchmark and
compared it to the outcome produced by the second-best mechanism in the presence of private information.
Hence, the efficiency of the TPAA mechanism was defined as the ratio between the second-best and the

first-best outcome.

5.2. Results

The left hand side of figure 3 shows the average behavior of the mechanism’s efficiency as a function of
the number of customer agents for uniformly distributed desired and actual quality values. The number of
provider agents in the market was fixed to 10, 50, and 100. For ten provider agents the efficiency was at its
minimum of 0.1310, followed by an efficiency increase as the number of customer agents grew. At about 15
customer agents the efficiency flattened and remained constant at 0.8397. When 50 provider agents offered
their services to less than 20 customer agents, the efficiency vanished completely. For 20 to 70 customer
agents the efficiency increased. It then flattened and remained constant at 0.8397. With 100 provider agents
in the market the efficiency was zero for less than 50 customer agents. It then increased until the same limit

of 0.8397 was reached (not shown in the graph). Analytically, this limit was calculated by

S0 —e(La)dt o eao (25)
Jo(1,8) —c(1,1)) dt

where a = 0 and b = 0.8571 were the bounds of integration that arose from the exclusion condition
y(l,t) >0.
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The right hand side of figure 3 shows the mechanism’s efficiency as K was increased. For N = M = 30
agents (first data point), the efficiency had its lowest value at 0.6078. The curve then increased monotonically

and approached the asymptote at 0.6859 from below.
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Figure 3: Mechanism efficiency for uniformly distributed quality realizations. Left: Number of provider agents fixed to 10, 50, and

100. Right: Number of customer and provider agents increased equally (N = M).

Figure 4 shows the results for normally distributed quality values truncated to the unit interval. The
left hand side of the figure illustrates the mechanism’s efficiency in a market with 10, 50, and 100 provider
agents. With ten provider agents in the market, the lowest efficiency was 0.6336 when two customer agents
requested for services. As the number of customer agents increased, the efficiency quickly increased and
remained constant at 0.9735 for ten and more customer agents. When 50 provider agents were in the market,
the lowest efficiency was 0.0769 for two customer agents. The efficiency then increased and also remained
constant at 0.9735 for 50 or more customer agents. When 100 provider agents offered their services to two
customer agents, the efficiency was at its minimum of 0.0053. It then increased and also remained constant
at 0.9735 for 100 or more customer agents (not shown in the graph). Again, this asymptote was calculated

analytically as

JE (1) = e(1,0)) f (1) dt
Jo (L,1) = c(1,0)) f(1)dt

~ 0.9735, (26)

where a = 0 and b = 0.6967 were the bounds of integration due to the exclusion condition and f(¢) was
the density of the normal distribution with g = 0.5 and o = 0.1.

The right hand side of figure 4 shows the mechanism’s efficiency as K was increased. For N =M = 10
agents (first data point), the efficiency had its lowest value at 0.9257. The curve then increased monotonically

and approached the asymptote at 0.9315.
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Figure 4: Mechanism efficiency for normally distributed quality realizations. Left: Number of provider agents fixed to 10, 50, and

100. Right: Number of customer and provider agents increased equally (N = M).

5.3. Discussion

Our experiments demonstrate that the mechanism’s inefficiency arising from privately known QoS does
not disappear even when the number of agents becomes large. Nonetheless, the results suggest that the
efficiency can be quite high. This finding provides evidence for the efficacy of the proposed allocation
mechanism. In the following paragraphs, the insights that can be obtained from our research are discussed.

First, in settings with many agents on both market sides, we find that although the mechanism’s
asymptotic efficiency can be quite high, it is bounded away from 100%. This result indicates that even
the presence of many agents does not eliminate the mechanism’s inefficiency caused by the asymmetry of
information among agents. The reason for this phenomenon is related to the agents’ informational smallness,
which has been studied by Gul and Postlewaite (1992) in the context of replicated economies as well as by
McLean and Postlewaite (2002) in more general frameworks. Loosely speaking, an agent is informationally
small if the incremental impact of that agent’s private information (i.e., desired/actual QoS) on the demand
of every electronic service is “small”, given the information of other agents (a precise formalization of this
notion can be found in McLean and Postlewaite (2002)).

In principle, the asymptotic inefficiency observed for our mechanism could disappear if certain
conditions were satisfied. Gul and Postlewaite (1992) identify such conditions sufficient for eliminating
inefficiencies in replicated economies. However, in certain problems with asymmetric information, these
conditions fail to hold. Therefore, the associated mechanisms cannot achieve full efficiency even when the
number of agents is large. One such example is the replication of the classic bilateral trading mechanism
studied by Myerson and Satterthwaite (1983), in which only a specific match produces pairwise private
surpluses. The two-trader case illustrates the impossibility of designing incentive compatible mechanisms
that are ex post efficient. In fact, the associated second-best mechanism reaches an efficiency of 84.36% for
uniformly distributed types (Gresik and Satterthwaite, 1983). Now, if this bilateral case were replicated with
independent valuations across pairs such that only specific matches generate mutual value, the inefficiency

due to asymmetric information may not vanish (Gul and Postlewaite, 1992). The presence of additional
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pairs in the market would not have an impact on the problem faced by any particular pair for allocating the
object between the two traders. This example demonstrates that even in the presence of many agents (and
consequently many objects), the mechanism’s asymptotic efficiency may still be bounded away from 100%.

The fact that the asymptotic inefficiency does not disappear in the TPAA mechanism is related to the
preceding discussion. The proposed model of the TPAA mechanism can be regarded as a specific replication
of the Myerson-Satterthwaite bilateral trading model. In our model, surplus is produced only when a specific
pair of two agents is matched together. It is only this particular agent pair that cares about the electronic
service to be allocated. Adding more agent pairs to this economy leaves unchanged the incremental impact
of each agent’s private information on the demand of the electronic service. In the proposed model, each
provider agent sells a different service and each customer agent desires a different QoS. It is this feature
that prevents the agents from becoming informationally small as the market becomes large. The absence of
informational smallness is the reason why the asymptotic inefficiency due to the asymmetry of information
does not disappear.

The illustrative example discussed earlier shows that the efficiency of the TPAA mechanism for large
economies is 68.59%, given uniformly distributed QoS on the unit interval. This efficiency, however,
is significantly lower than that for the bilateral trading mechanism (84.36% as reported by Gresik and
Satterthwaite (1983)). If the latter economy were to be replicated, the number of commodities would go
to infinity while the agents’ valuations would still remain independent. We, however, focus on a framework
in which an agent’s utility depends upon the types of other agents. In particular, a customer agent’s utility
is maximized when its desired QoS matches the actual QoS delivered by a provider agent. Similarly,
provider agents maximize their utility by delivering exactly the QoS desired by customer agents. It is
this interdependence of the agents’ utilities that causes the additional efficiency loss of over 15.77% as
compared to the outcome in Myerson and Satterthwaite (1983). This observation suggests that agents with
interdependent utilities have greater incentives to misreport their QoS in order to win a better allocation than
the agents in the (replicated) bilateral trading mechanism with independent valuations.

Second, although the structure of our formal framework differs from that of McLean and Postlewaite
(2002), we argue that their notion of an agent’s informational size can, to some extent, still be applied to our
model. In fact, the informational rent of an agent quantifies the amount of compensation that must be paid
to that agent to induce honest reporting of private information. The agents’ informational rents are linked to
their informational size (McLean and Postlewaite, 2004). In our proposed model, the agents’ informational
rents are given by the second summand in the transfer functions (17) and (18). Applying a similar argument
as Johnson (2011) to our illustrative example for K — o, the informational rent Sg(0) of customer agents

and the informational rent S3 (o) of provider agents in the limit market are respectively given by

(7] 1
S;(e):/o avgt’t)dz:\@ and S;(G):/Gacgt’t)dtzl—az. @7

Hence, both quantities are bounded away from zero when the number of agents becomes large. This
example with uniformly distributed QoS on [0, 1] shows that the amount of compensation for honest reporting

does not disappear even when the market size goes to infinity. In this sense, the informational size of the
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agents does not go to zero as the market becomes large.
Third, it is worth noting that the difference in virtual valuations required by the allocation rule (16) does
not vanish even when the number of traders is large. The necessary condition for any two agents to match in

the limit market is y(6,0) > 0 or, equivalently,

v(6,0) —c(6,0) 2292+2_W >0.7915 (28)

for uniformly distributed QoS. This difference in valuation and provision cost must be satisfied to warrant

service allocation in large markets. In particular, the right side of (28) is bounded away from zero by 0.7915

for all 6 € (0,1] even when K — c. In the asymptotically efficient mechanism proposed by Gresik and

Satterthwaite (1983), the difference in reservation values vanishes at the same rate as 1/2K approaches zero.

Again, the presence of this non-vanishing threshold (28) confirms that the TPAA mechanism cannot attain
full efficiency even when the number of traders is large.

Fourth, the results obtained in the setting with normally distributed QoS (mean of 0.5 and standard
deviation of 0.1) are different. As in the uniform case, the asymptotic efficiency is also bounded away from
100%. However, it is significantly higher than that for the uniform distribution. Normally distributed QoS
entails an asymptotic efficiency of 93.15% as K — oo. When the agents’ types are drawn from the normal
distribution, the associated realizations are scattered around its mean of 0.5 with exclusion lines beyond the
standard deviation of £0.1 (cf. right hand side of figure 2). Thus, there is more mass in the middle, which
means that the agents’ incentive to distort their QoS for receiving a better allocation is smaller. The left side
of figure 2 depicts this distortion due to normally distributed private information.

A last comment is on the implementability of the proposed mechanism in dominant strategies.
In general, imposing incentive compatibility constraints for dominant-strategy mechanisms instead
of Bayesian mechanisms restricts the set of implementable mechanisms considerably.  However,
Mookherjee and Reichelstein (1992) identify mechanism design problems for which Bayesian incentive
compatibility can be replaced by the more stringent requirement of dominant strategy incentive compatibility
without any losses. Since the allocation rule defined in Theorem 1 satisfies the monotonicity conditions of
Mookherjee and Reichelstein (1992), there is no loss from replacing Bayesian equilibrium constraints by
dominant strategy requirements. Hence, the TPAA mechanism proposed in this article is implementable in

dominant strategies.

6. Conclusion

The contribution of this research is a second-best mechanism for allocating electronic services with
privately known QoS. Using a mechanism design framework, we derived the mechanism and studied its
efficiency properties. The proposed mechanism internalizes the QoS desired by multiple customer agents
and the QoS actually offered by multiple provider agents. By providing a theoretically-sound extension
of the model of Johnson (2013), we were able to design a mechanism that maintains the properties of the

underlying model. In our extension, we studied the social welfare properties of the second-best mechanism
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for matching customers and providers. Specifically, the allocation mechanism (i) is incentive compatible,
(i) is individually rational, (iii) balances the budget, and (iv) maximizes the expected social welfare. Our
first experiment considered a market with uniformly distributed QoS, while our second experiment assumed
normally distributed QoS. In all experiments, we found that the asymptotic efficiency of the second-best
mechanism is bounded away from 100% even when the number of agents goes to infinity. This finding is
significant because it indicates that the agents in our model are informationally large. We explained why the
agents’ informational size does not vanish even in large markets. Our research provides important insights
into the efficiency properties of the proposed mechanism. Although full efficiency cannot be attained, our
results suggest that in settings with normal random QoS, the mechanism’s inefficiency due to the asymmetry
of information is reduced to about 7% as the market grows larger.

From a managerial perspective, our study can support a social planner in designing competitive service
allocation when each participant is privately informed about their QoS. On one hand, the social planner can
ensure that every decision is made by the participants only. Hence, the emerging distributed mechanism
implementation eludes the need for an external, independent decision maker. On the other hand, the
social planner can take into account that full efficiency may not be attained as long as the participants are
informationally large. If the incremental impact of each participant’s private information on the demand
of the electronic service remains unchanged, inefficiencies may not vanish even in the presence of many
participants. However, the results of the simulation study in this proposal can help the social planner to
obtain a more accurate estimation of efficiency losses due to asymmetric information.

Future research might be pursued in two directions. First, in the current model, QoS is a one-dimensional
parameter, which could be extended to multiple quality attributes. This change would require extending
the model and revisiting its properties. Second, while the properties of the model have been assessed
through analytical evaluation and two experiments, a more comprehensive quantitative evaluation could
be required to study the efficacy on a greater scale. For this purpose, the mechanism could be studied in
simulation experiments with actual or synthetic data that more realistically reflect markets for electronic

services including QoS and interdependent utility functions.
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Appendix A. Proofs

Lemma 1. Let x;;(0,0) be the probability that provider agent b; is allocated to customer agent a;. Then
transfer functions tc(6,0) and tp(0,0) exist such that {x;;(0,0),1c(0,0),tp(0,0)} is incentive compatible
and individually rational if and only if Eg_, 5[xi;(6;,-)] is non-decreasing, Eg o_.[x;;(-,0;)] is non-increasing

and

™=
Mx=

IE[. (ve(6:,0) — wp(ei,o,))xij(e,o)}zo. (10)

Il
—
~.
Il
-

PROOF. Suppose {x;;(0,0),tc(6,0),tp(0,0)} is incentive compatible. We start to derive our argument for
provider agents. For any quality pair & # ¢; we must have

-

I
_

UP(GJ') ZEQ‘O_!. [l‘p(e,&,ﬁfj)— C(Qi,Gj)xij(e,(A)',G,j)} and (A.1)

1

™=

UP(CAF) EEG,G,]- |:l‘p(9,0j,6_j)— c(@,-,c%)x,-j(e,oj,o_j)}. (A.2)

1

These two inequalities imply that

(e

Eoo | [i(xlj (0.1,0; xij(e,a,o,j)) gtc(e,.,t)}dzzo. (A.3)

oj i=1

Therefore, if & > o©j, we must have Egq [xij(0,0j,0_;)] > Eq.c_; [xij(0,6,0_)] and thus
Eg,5_;[xij(+,0;)] is non-increasing. A similar argument for customer agents shows that Eg_, 5 [x;;(6;, )] must
be non-decreasing. Corollary 1 in Milgrom and Segal (2002) provides expressions for the indirect utility of
each agent in any incentive compatible mechanism:

M
Uc(6;) = Ue(0 +/ Eo o Z m’ TR (6,0 )]dr and (A.4)

Up(o;) =Up(G) + ]EBG[

Oj

D (0,70 )|ar, (A.5)

le i

where Uc(0) and Up(G) are the expected utilities evaluated at the lower and upper quality bounds,
respectively. By substituting the indirect utilities (A.4) and (A.5) into the sum of all agents’ expected utilities
given in (1) and (2), we obtain an alternative expression for the expected social welfare defined within the
maximization problem in (7):
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dc(6

D (0,10 )|ar)i(e))do;. (A6)

Expression (A.6) is the expected social welfare expressed by the agents’ indirect utilities. Therefore,
it must equal the expected social welfare obtained by the agents’ direct utilities in the maximand of (7).
Equating these two expressions, followed by some basic algebraic manipulations, integration by parts, as
well as rearranging and collecting similar terms yields

=

M
Y (we(6:,0;) — wp(6,0)))x;(6,0)|. (A7)
j=1

Mz

M
Y Up(5) = [
j=1

i=1

I
—_

Since individual rationality holds, we must have Uc(0) > 0 and Up(G) > 0, which gives us expression
(10) in Lemma 1.

Suppose now that x;;(0, o) satisfies (10) and that Eg_, 5[x;;(6;,-)] is non-decreasing and Eg 5, [x;;(-, 0;)]
is non-increasing. Consider the following expected payments made by customer agent a;

M 6 M (9v
9179—17 Z 6176] Xij 9176—17 / -xlj(r7 G_i,G)dI” (AS)

and the expected compensation received by provider agent b

ol dc(6;,r)

N
p(0,0;,0_;) =Y c(6;,0))x;(0,0;,0_;)+ 5

i=1 0j i=1

xij(G,r, G_j)dl". (A9)

These expected transfers are obtained by equating the direct and indirect utilities, as well as setting the
worst-off quality payoffs to zero; that is, Uc(0) = Up(G) = 0.
To check incentive compatibility of (A.8), observe that
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6 M
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0 o M6 d
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= EG—L / 9,, GJ (F, Gj))grxij(r, 0_;, G)dr} > 0. (A.10)

The last inequality is a consequence of Eg , 5[x;;(6;,-)] being non-decreasing. Recall that customer
agent’s valuation is increasing in its maximal value. Therefore, customer agent a; would do better reporting
6; instead of 8. The proof of incentive compatibility for provider agents is analogous.

Because we have assumed (10), the sum over all expected utilities evaluated at the lowest and highest
qualities respectively must be non-negative. Further, equations (A.4) and (A.5) imply that Uc(6;) is
increasing in 6; and Up(0;) is decreasing in ¢;. Due to these monotonicity properties and because of (10),
it suffices to verify individual rationality for customer agent’s lowest desired quality 6; = O and provider
agent’s highest actual quality o; = 6. This yields Uc(6;) > 0 and Up(c;) > 0.

Lemma 2. Any incentive compatible, individually rational mechanism satisfies ex ante budget balance.

PROOF. To check ex ante budget balance we must show that the net amount of payments made by customer
agents and compensations received by provider agents never runs a deficit. Subtracting the sum of expected
compensations from the sum of expected payments yields

N 0 M (o
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The inequality in line (A.11) is a consequence of (10) in any incentive compatible and individually
rational mechanism. Hence, the net balance of what customer agents pay and what provider agents receive in
the mechanism is greater or equal zero in expectation. Exact equality can always be achieved by subtracting
a constant from customer agents’ payments.
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Theorem 1. Let customer agent a;’s valuation v(6;, GJ-) be maximized when 0; = G; with the maximal value
increasing in 6;. Further, let v(6;,0;) be supermodular in both arguments and concave in 6;. Let the

distribution function F () be log-concave and let

3 -G
2°v(6;,0;) >0,
891.286]'
f(@,) 0 8v(9,-,oj)
1—F(9,') = 89i10g< an ) (22)

On the supply side, let provider agent b;’s provision cost c¢(6;,0;) be minimized when c; = 6; with the
minimal value increasing in ©j. Further, let c(6;,0;) be submodular in both arguments and convex in G;j.

Let the distribution function H(-) be log-concave and let

836(9,',6]‘) <0,

89,-86% B

Moy . 9 (9e(6.0)

H(oj)zacj1°g< 56 ) @3)

Then, the TPAA mechanism maximizes the expected social welfare among all incentive compatible and

individually rational mechanisms. Further, budget balance is satisfied.

PROOF. The inner term of the maximand in (7) is the difference between a;’s valuation and b;’s cost.
Because v(6;,0;) is supermodular and ¢(6;,0;) is submodular (i.e., —c(6;,0;) is supermodular), their
difference as a linear combination is again supermodular. If the production function is supermodular,
the optimal match function is positively assortative (Shimer and Smith, 2000). By Lemma 1, the TPAA
mechanism is incentive compatible and individually rational if and only if the monotonicity properties are
satisfied. These are satisfied if the reserve functions Rc(6;) and Rp(0;) are increasing. The hazard rate (22)
for customer agents guarantees that a higher desired quality 8; unambiguously results in a better lottery over
the actual qualities of provider agents. Similarly, the hazard rate (23) on the provider agent side ensures that
a higher actual quality o; unambiguously entails a lower likelihood to find a customer agent. Therefore, the
reserve functions are increasing. Lemma 2 establishes budget balance.
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