
1

Formal Correctness of Supply Chain Design

Joerg Leukel a, Vijayan Sugumaran b,c,*
a University of Hohenheim, Schwerzstr. 35, 70599 Stuttgart, Germany, joerg.leukel@uni-hohenheim.de

b Oakland University, 306 Elliott Hall, Rochester, MI 48309, USA, sugumara@oakland.edu
c Sogang University, Seoul 121-742, Republic of Korea

* Corresponding author, phone +1 (248) 370-2831, fax +1 (248) 370-4275

Abstract. Many companies use supply chain models for designing the flow of goods and services from
their suppliers all the way up to the final customers. Over the past 15 years, the Supply Chain Operations
Reference Model (SCOR) has become a widespread modeling technique for designing such supply chains
and sharing design information with supply chain stakeholders. However, neither the syntax nor the
semantics of SCOR are well defined. This limitation has important consequences for its usage: Supply
chain models may be ambiguous and their correctness cannot be verified. We address this problem by
mapping SCOR supply chains onto graphs and formalize the semantics of SCOR. The mapping is driven
by constructs from the supply chain management literature. The proposed artifact is a supply chain
grammar, which we apply to a set of SCOR models taken from industry sources. We show the grammar’s
usefulness by verifying the correctness of these models using analytical techniques.

Highlights:

− We deduce a grammar of the SCOR modeling technique from SCM literature.
− We propose correctness properties for SCOR-based designs.
− We demonstrate the usefulness of the grammar for detecting errors in existing models.

Keywords: conceptual modeling, process modeling, supply chain management, supply chain design,
model verification, SCOR

This is the authors’ version of the following journal article:

Leukel, J., & Sugumaran, V. (2013). Formal Correctness of Supply Chain Design.
Decision Support Systems, 56, 288-299.

http://dx.doi.org/10.1016/j.dss.2013.06.008
© 2013. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

2

1 Introduction

Supply chain design is a critical business problem. For many industries, supply chains have become an
important focus for competitive advantage. With the increasing global division of labor, the performance
of a single company depends more and more on its ability to maintain effective and efficient relationships
with its suppliers and customers. Thus, managerial decisions are moving from an organizational scale to a
supply chain scale [20]. Supply chain design is the task of determining the basic, long-term structure of
the supply chain by defining its elements, objectives, locations, and key organizations [37]. The role of
Information Systems (IS) to support this task has recently been the subject of inquiry.

In general, supply chain design faces two difficulties. First, the design space contains a vast number
of alternatives, which makes it hard for designers to evaluate and select the best alternative. Second,
designing a supply chain incorporates stakeholders from the supply and demand side, which requires
sharing and understanding design information by various parties. These two difficulties can be mitigated
through reference models that: (1) restrict the design space by providing core constructs that can be
configured under certain design constraints, and (2) define a common terminology for sharing designs
across organizations. Supply chain management (SCM) has adopted this idea in the form of the Supply

Chain Operations Reference Model (SCOR) [34, 35]. Over the past 15 years, SCOR has become a
widespread modeling technique for supply chain design. It is promoted by a stellar group of firms from
various industries and can be regarded as a best practice. Research has made use of SCOR for designing
both descriptive and analytical methods for various supply chain problems, in particular, performance
management [23, 41], configuration [32], and market-based balancing of demand and supply [27].

The main disadvantage of SCOR is that neither its syntax nor its semantics is well defined. A formal
specification of SCOR in the form of a grammar does not exist. The modeling technique is only described
in a handbook [36], which provides a reference to model elements with simple example models that don’t
provide much explanation. The lack of well-defined syntax and semantics has severe consequences. If
SCOR users interpret the informal description of the technique in different ways, the supply chain models
built using SCOR will become ambiguous and potentially error-prone. This practice may result in
syntactically incorrect models that cannot be used by any third party. Software vendors who provide
SCOR modeling tools are in danger of implementing the technique incorrectly. Ultimately, the two
objectives of reducing the design space and enabling cross-organizational information sharing cannot be
met.

Incorrect supply chain models affect the managerial use of these models. We briefly discuss the
problems resulting from incorrect models by referring to the three use case of the SCOR technique [36]:

− Supply chain description aims at providing an unambiguous description of an actual or planned
supply chain for parties that are interested or involved in this supply chain. Incorrect design manifests
in configuring the constructs of the SCOR technique falsely, for example, invalid linkage of
constructs or missing constructs. If these deficits cannot be detected and repaired, the description is
only understandable by the designer and the individuals that share the designer’s interpretation.
Hence, the model is limited to a small group and does not extend to all the supply chain stakeholders.

− Supply chain measurement is concerned with measuring the performance of connected activities and

3

the entire supply chain. For this purpose, the technique provides a standard set of metrics (e.g. cycle
time, cost, flexibility) and standard formulae for analyses, which rely on correct models as outlined in
the supply chain description. For incorrect models, the aggregation process would yield either
incorrect or no results. Hence, the supply chain performance cannot be correctly measured.

− Supply chain evaluation is the task of assessing different designs and selecting the best configuration
with regard to certain criteria. These criteria include metrics as defined by the SCOR technique.
Evaluation is an iterative process of design (i.e., creating alternative models) and metrics-based
measurement. If the measurement yields incorrect or no result for at least one model, then the
evaluation will also become incorrect (by comparing configurations that differ due to the
interpretation of the technique) or incomplete and not feasible (due to missing data).

Adding a formal specification to SCOR is non-trivial, unless we are able to get this information from
SCOR’s inventors or at least articulate their interpretation explicitly. However, SCOR was invented by a
dynamic group of individuals who worked over a long period in a more or less informal organization.
Hence, it is difficult to elicit this information from this group. What we need is a supply chain grammar
that consists of constructs for supply chain design and rules that specify allowable combinations of these
constructs. There are two basic approaches for defining this grammar: deduction and induction. Grammar
deduction defines constructs and rules by analyzing relevant theories and axioms. Grammar induction
learns constructs and rules from a set of observations – here, the SCOR supply chain models. The latter’s
precision, however, is negatively affected by the share of incorrect models in the set of observations.

Current solutions fall into the category of grammar deduction. However, no research endeavor has
yet used the existing body of knowledge from SCM research for deduction. Instead, the main source of
deduction is the informal description of SCOR, which is then interpreted by the respective researcher. The
disadvantage of these approaches is that the deduction is not made explicit to allow for reproducibility.

We address the problem of the lack of explicit definition of SCOR by mapping SCOR supply chains
onto directed graphs and formalizing the syntax and semantics. The mapping is a deduction process
supported by the constructs from the SCM literature. These constructs enable us to enrich SCOR with
additional constraints that have a strong theoretical underpinning. Thus, the objectives of this research are
to: (1) develop the syntax and semantics of SCOR in the form of a supply chain grammar that allows for
assessing the correctness of supply chain design, and (2) apply this artifact to a set of SCOR models to
demonstrate its usefulness for model verification. The contributions of this research are the formal
specification (grammar) of SCOR and analysis techniques for SCOR-based supply chain design.

The remainder of this paper is organized as follows. In section 2, we briefly introduce the SCOR
technique and provide preliminary notions that will be used for enrichment by grammar deduction. In
section 3, we discuss the approaches to the correctness of supply chain design and compare our work with
the relevant literature. In section 4, we derive specific constraints on supply chain design from the SCM
literature and provide the grammar. In section 5, we demonstrate the usefulness of our proposed grammar
in verifying the correctness of SCOR models taken from industry sources. Section 6 concludes the paper
and outlines some of our future work.

4

2 Preliminaries

2.1 SCOR Technique

SCOR consists of an intuitive graphical supply chain description language and a set of supply chain
metrics that can be associated with supply chain activities. The graphical language is targeted for the
business audience, who uses this language for effective communication of supply chain structures at
different levels of abstraction. At the strategic level, SCOR provides a modeling technique for primary
product flows; the resulting model is called a SCOR thread diagram. The designer can then add details to
these diagrams by incorporating plan processes (information flow), secondary product flows (return of
products to the supplier), and describing more fine-grained activities associated with the primary product
flow, e.g., receiving orders, packaging, and routing shipments. These activities can be configured from a
reference set of several hundred so called process elements. In the following, we consider only primary
product flows, since this level represents the strategic configuration of supply chains.

A thread diagram shows the flow of products (including tangible goods and services) as a chain of
linked activities. An example diagram is shown in Fig. 1. The technique provides the following elements:

− Process is an activity of either sourcing, manufacturing, or delivering a product (symbol: arrow-
shaped rectangle). The symbols can have different colors to signify the type of activity; however, the
color scheme is not precisely defined in the SCOR technique.

− Product flow represents the transfer of a product from one process to another (symbol: arrow).

− Actor is an organizational entity that executes one or more processes (symbol: label of process).

− Tier reflects the level of involvement of actors when considering the entire supply chain. Tiers
arrange actors from left to right (symbol: vertical swim lane).

Industry

Public Sector

Raw Material
Supplier

Component
Supplier

CustomerManufacturer

Software
Supplier

Engine
Manufacturer

D1 S1

D1 S1

D2 S2

S3

S3D3

M3

Supplier

D3

Fig. 1. Example SCOR thread diagram.

If a tier contains only one actor, then it is sufficient to add the actor label to only one process
(instead of labeling all the processes). For example, in Fig. 1, the M3 process as well as all the other
processes in this tier are executed by the “Engine Manufacturer” actor.

SCOR differentiates processes for primary product flows by the degree of customization (product
specificity): (1) stocked products, (2) make-to-order products being manufactured for a specific customer
order, and (3) engineer-to-order products being designed and manufactured to a specific customer
requirement. This differentiation is then applied to all the processes of sourcing (S), manufacturing (M),

5

and delivering (D) products. Each process is thus encoded by a 2-character code, which denotes the
process category, e.g., D2 for delivery of make-to-order products. This differentiation is part of SCOR
since 1997 (version 2.0) and was slightly modified in 2003 (version 6.0) by including the D4 process
category for the delivery of retail products. This product specificity exists only for delivery processes.

2.2 Preliminary notions

We define the basic notions that formally capture the main elements of the SCOR technique for thread
diagrams (as introduced in section 2.1). These notions will serve as the baseline for adding constraints on
correct diagrams in the succeeding sections. They are minimal in the sense that we avoid making
assumptions about the technique that may not be justified by relevant theory.

Definition 1a (SCOR thread diagram). A SCOR thread diagram is a directed graph TD=(P, F, A,
T, PC, PA, PT) where:

− P is a finite set of processes p∈P,

− F is a finite set of product flows f∈F with F⊆P×P,

− A is a finite set of actors a∈A,

− T is a finite set of tiers t∈T,

− PC is a function which maps each process onto a process category with PC:P�{S1, S2, S3, M1, M2,
M3, D1, D2, D3, D4},

− PA is a function which maps each process onto an actor with PA:P�A,

− PT is a function which maps each process onto a tier with PT:P�T.

Using this definition, the thread diagram shown in Fig. 1 can be formally defined by all components
of TD. For instance, the diagram contains eleven processes, which must be numbered, e.g., P={p1, p2, ..,
p11}. Each arrow in the diagram denotes a product flow, e.g., F={(p1, p2), (p3, p4), ..}. The processes p1
and p3 belong to the process category D1, thus PC={(p1�D1), (p3�D1), ..}, and are contained in the
Supplier tier, thus PT={(p1�Supplier), (p3�Supplier), ..}.

3 Related Work

3.1 Supply Chain Design

Two dimensions are constituent to the task of supply chain design. The process dimension relates to
answering the question which activities must be performed by the designer in what order to produce the
supply chain model. SCM research yields a plethora of analytical models and optimization methods [6,
37]. The result dimension relates to the constructs, i.e., the conceptual vocabulary of the problem domain,
and the formalisms used for articulating these constructs. Correctness of supply chain design is the
ultimate concern of the result dimension. The SCOR technique addresses the result dimension.

The SCOR technique has been documented in a handbook [36], which provides definitions of all the
aforementioned elements. The handbook, however, falls short of providing a formal specification in the
form of a grammar that is unambiguous and free of interpretation. It also provides very little information
on how to link processes under consideration for process categories, actors, and tiers. The lack of a formal
grammar has led to the conclusion that SCOR is less useful for analyzing supply chains through

6

quantitative means [4, 19]. Arns et al. argue for reducing the role of SCOR to description, whereas all
model analysis tasks would require a more capable language providing a well-defined execution
semantics [4].

The literature yields several approaches for amending SCOR with a grammar. These approaches
differ in the specification language used and the way they augment the SCOR technique.

Becker et al. [7] choose the Entity-Relationship-Model (ERM) for specifying a meta-model of
SCOR. The rationale is that the ERM is adequate for capturing the SCOR constructs as well as the
resulting meta-model can easily be transformed into a database schema for model storage and retrieval.
An interesting aspect of the proposed meta-model is the process category condition, which enforces that
processes of a certain category must be connected with processes of another category (e.g., “make-to-
stock” is proceeded by “deliver make-to-stock”). These conditions may help in assessing the correctness
of supply chain designs, though they have not been made explicit, but were illustrated by an example
only. Unfortunately, this research provides little information on how the meta-model was constructed.
The authors try to provide convincing arguments for the meta-model and report about a prototype
implementation; however, the prototype is not concerned with correctness of supply chain designs.

Millet et al. [26] propose a set of possible relationships between process categories denoted as rules.
They assume that designing a supply chain implicates a certain body of rules. The explication process for
these rules is, however, not described. The rules are not formally specified. In addition, the rule set is at
best incomplete, since it misses product flows between different Make processes.

SCOntology is an ontological approach to formalizing the SCOR technique [15]. The rationale for
using the Web Ontology Language (OWL) [38] is that OWL provides more expressiveness for defining
concepts and their interrelations than ERM. The scope of the proposed SCOR ontology is defined by the
so called competency questions. Insofar as these competency questions are concerned, a justification for
them is not provided by these authors. In addition, the ontology is described using graphical means only,
and thus lacks axioms. A brief case study is supplied to demonstrate the validity of the proposal.

The ontological approach by Sakka et al. [33] does not interpret the textual descriptions contained in
the SCOR handbook, but starts with the meta-model that is implemented by the software tool
ARIS/SCOR. This meta-model, which is specified in ERM, is then mapped onto an OWL ontology. The
advantage is that this approach preserves all constructs and rules contained in the baseline meta-model.
However, Sakka et al. admit that the designers of ARIS/SCOR were interpreting the SCOR handbook and
thus made assumptions, which are unknown to the tool user.

The most comprehensive ontological approach is SCOR-FULL [42], which goes beyond SCOR
thread diagrams by including SCOR metrics and input/output information. This ontology is aimed at the
semantic interoperability of supply chain designs, without paying attention to correctness. Similar to [15],
the rationale of this ontology is limited to answering an initial set of competency questions.

Our approach differs from existing research as follows. First, by grounding the grammar deduction
on constructs and rules from the SCM literature, we aim at reducing the risk of interpreting the SCOR
handbook in a subjective way. This risk may lead to a grammar that contradicts the insights from SCM
research. Second, our research is informed by the use of ontology languages, but the proposed grammar is
independent from the usage of a particular ontology language. Third, we address the formal correctness of

7

supply chain design and aim at providing specific means for assessing this property.

3.2 Business Process Management

Much progress has been made on developing methodologies for assessing and preserving the correctness
of business process models. Since supply chain design also describes the business activities carried out
(those for supplying products from suppliers to the final customers), we review contributions from the
business process management (BPM) literature that may be beneficial for supply chain design.

Process verification determines whether a process model complies with a specified structure and
behavior. Verification depends foremost on the existence of formal semantics of the process description
language used. Many widely used languages for business process modeling lack formal semantics, e.g.,
Event-driven Process Chains (EPC) [1] and the Business Process Modeling Notation (BPMN) [12].
Therefore, BPM research has investigated their mapping to more powerful modeling techniques, which
also supply analysis techniques for correctness properties. Of particular significance are the works that
adopt analysis techniques using Petri-nets. Mendling et al. [24] propose a Petri-net approach for detecting
errors in EPCs and apply it to a set of real-world EPCs taken from the SAP Reference Model. They show
that these EPCs are error-prone, because the model designers did not conform to the EPC semantics.

Supply chain design shows similarities to business process modeling. However, we need to be aware
of important differences between product flow and control flow. The SCOR technique does not make the
semantics of the product flow construct explicit. For instance, let us consider the diagram given in Fig. 1.
The process of category M3 has three ingoing arcs (sourcing) and two outgoing arcs (delivery). Does it
mean that this process transforms all three ingoing products into the two outgoing products? Or can this
process be executed if at least one ingoing arc is activated? The answer cannot be given, because the
execution semantics is unclear. We need to keep in mind that supply chain design is concerned with
defining the structure of supply chains, not their behavior. For instance, SCOR lacks logical connectors,
which are common in control flow descriptions.

Arns et al. [4] combine the SCOR technique with a business process language as follows: They
propose using a custom notation called ProC/B; the advantage is that ProC/B models can be translated
into Petri-nets, which allow for analyzing behavioral properties to a great extent. Activities in such
models are encoded as SCOR process categories. The only contribution of SCOR is the vocabulary for
activities. This approach results in two modeling phases: First, a SCOR thread diagram is created. Then,
its activities and flow relationships will be used for creating the ProC/B model. The disadvantage is that
the second phase requires decisions to be made about the control flow, but this information is not supplied
by the diagram from the first phase (no execution semantics of process categories).

Grammar was first used as a metaphor for describing business processes in organizational studies
and has since then spread to BPM research. Pentland [30] proposed a systematic approach for developing
models of organizational processes by adopting the grammar metaphor. This approach was then extended
by Lee et al. [22] for using process grammar for constraining the design space of business processes. The
objective of constraining also holds for the SCOR reference model, which should help creating supply
chains by referring to valid supply chain structures that are supplied by only SCOR. Our research is
influenced by the grammar metaphor. Unlike Lee et al., who use production rules as constructs for
context-free grammars, we employ graph algebra that allows asserting constraints on valid graphs.

8

Surprisingly, Pentland also proposes in one of his early works [29] the process grammar approach
for supply chains. He argues that supply chains are well-suited for grammars because of their repetitive
constituents, high degree of modularization, and centering on product flows, which all result in a rather
limited set of supply chain constructs. He defines a supply chain grammar of seven constructs (activities)
and nine “tentative” supply chain patterns. This grammar was motivated by experiences gained from three
case studies. However, its expressiveness is severely limited, e.g., patterns are sequences of activities
only, with no further constraints on valid linkages as well as no formalization of the grammar.

4 Grammar Deduction

In this section, we describe the process of deducing the grammar for SCOR thread diagrams from the
SCM literature. For each element of the basic model (as defined in section 2.2), we add theoretical
findings that further constrain the supply chain design.

4.1 Supply Chain Literature

Supply chain is the unit of analysis of SCM, which over the past 30 years has evolved from a field in
operations management into a discipline of management research [10]. The recent past has seen an
increasing debate about the state of SCM as a discipline [8] as well as a call for theory building [9, 20].

For our purpose of grammar deduction, it is important to state that the majority of SCM researchers
use existing theories from other disciplines to explain different aspects of the supply chain [8]. SCM is
inter-disciplinary, which encompasses logistics, purchasing, operations management, marketing, strategy,
and others. Therefore, the grammar deduction will include both supply chain body of knowledge and its
antecedents. The scope of the body of knowledge is constrained by supply chain design as defined in
section 1, i.e., determining the long-term, basic structure of supply chain activities, which are connected
by product flows. We are thus interested in constructs that are commonly used in SCM research to
describe these structures. Due to the absence of a single “original” theory of supply chain, we extract
relevant constructs from seminal SCM works in the related fields. These constructs are higher order
abstractions that can be used in supply chain models, specifically in supply chain design (descriptive
nature of constructs).

4.2 Deduction from SCM Frameworks

Descriptive constructs can be found in research that condenses the terminology used in SCM and frames
the main issues into conceptual frameworks. These works represent the effort to consolidate the abundant
but disparate literature [11, 14, 25]. An important contribution stems from Lambert and Cooper [20],
whose framework consists of three main elements: Supply chain network structure includes the firms and
the links between these firms. Supply chain business processes move the product from supplier to the
customer, and SCM components are managerial variables that are used to integrate the business processes.

There are strong ties between these elements and supply chain design as discussed below. The
Network structure answers the following question: who are the relevant supply chain members (in SCOR:
actors) with whom to link the processes? Relevance is determined by examining whether an actor carries
out value-adding activities to produce a specific output for a customer or market. Therefore, supporting
actors, who for example only provide resources to other actors, are not the unit of analysis. We deduce

9

that: (1) every actor’s processes must be linked to at least one process, and (2) no actor exists without
such a process. Using formal notion, we represent these two constraints C1 and C2 as follows:

ID Description Formal definition

C1 Each process p has at least one incoming
or outgoing product flow f.

For each p∈P there exists at least one f∈F

with f=(m, p) or f=(p, m), and m∈P, m≠p.

C2 Each actor a carries out at least one
process p.

For each a∈A there exists at least one p∈P
with PA(p)=a.

The framework further defines structural dimensions. The Horizontal structure introduces the
construct of tier, which is defined as the set of actors sharing the same horizontal position within the end
points of the supply chain. Thus, all tiers can be arranged in graphical models with no overlaps. It has
become common practice to place the final customer as the right most tier; this holds also true for the
SCOR technique. When referring to a particular tier, all the tiers to its left are called upstream and those
to the right are called downstream. For expressing the horizontal segmentation, we first introduce a
numbering scheme for tiers by extending the definition of the thread diagram (definition 1b). The function
N assigns an integer to each tier; the tier number ranges from 1 to |T| for the total number of tiers.

Definition 1b (SCOR thread diagram). A SCOR thread diagram is a directed graph TD=(P, F, A,
T, PC, PA, PT, N) where N is a function that defines the order of tiers, N(T):={1,..,|T|}.

Using this definition, the formal representation of the diagram shown in Fig. 1 can be enriched as
follows. The diagram is made of three tiers T=({Supplier, Manufacturer, Customer)}, which are arranged
from left to right. Therefore, we add N=({Supplier� 3, Manufacturer� 2, Customer� 1)}. Then, we add
the constraint C3, which prevents the existence of “empty” tiers.

ID Description Formal definition

C3 Each tier t contains at least one process p. For each t∈T there exists at least one p∈P with PT(p)=t.

The Vertical structure refers to the number of actors within each tier. Depending on the number, a
tier may be characterized as rather narrow or wide. The narrowest tier is a tier that contains only one actor
and process; this requirement is already captured by C3 and C2.

The Horizontal position describes the actor’s closeness to the point of origin and the distance from
the point of consumption of the supply chain. The point of origin is the tier for which no further supplier
exists (tier denoted by N=|T|). The point of consumption is the tier in which no further value is added, but
the product is consumed (tier denoted by N=1). For SCOR, we deduce that every thread diagram has: (1)
one origin tier that includes at least one process with no incoming product flow, and (2) one consumption
tier that includes at least one Source or Deliver process with no outgoing product flow. To be able to state
constraints on the number of incoming and outgoing flows, we first need to introduce the notion of
predecessor and successor processes. For a given process p, we denote its predecessor processes by •p and
its successor processes by p• (definition 2). For instance, in Fig. 1, the process of D1 (denoted by p1) in

the Supplier tier has no incoming product flow, thus •p1={∅}, and one outgoing flow to the process
denoted by p2, thus p1•={p2}.

Definition 2 (predecessors, successors). For p∈P, •p={m|(m, p)∈F} denotes the set of predecessors

of p, with m∈P, and p•={m|(p, m)∈F} denotes the set of successors of p, with m∈P.

10

Then we are able to define the constraints for the origin tier (C4) and the consumption tier (C5).

ID Description Formal definition

C4 The left most tier t contains at least one
process p with no incoming product flow f.

For t∈T with N(t)=|T| there exists at least one p∈P with
PT(p)=t ∧ |•p|=0.

C5 The right most tier t contains at least one
process p of Source or Deliver with no
outgoing product flow f.

For t∈T with N(t)=1 there exists at least one p∈P with
PT(p)=1 ∧ PC(p)∈{ S1, S2, S3, D1, D2, D3, D4} ∧ |•p|=0.

The existence of origin and consumption tiers implies that another tier, which comprises the focal
firm, lies between these tiers. The definition by Mentzer et al. makes this implication explicit by defining
supply chain “as a set of three or more entities ... directly involved in the upstream and downstream
flows” [25]. Therefore, the number of tiers, as well as the actors is at least three. Thus, C6 and C7 are the
cardinality constraints on the tiers and actors.

ID Description Formal definition

C6 Each thread diagram TD consists of at
least three tiers (t).

For any TD: |T|≥3.

C7 Each thread diagram TD consists of at
least three actors (a).

For any TD: |A|≥3.

With respect to Supply chain business processes, the framework in [20] provides taxonomies of
processes and process links. Both taxonomies are, however, more detailed and broader than SCOR. In
particular, they consider also information flows. The SCOR categories of Source, Make, and Deliver map
to those of procurement, manufacturing flow management, and demand management. Product specificity
is not found in the framework.

The set of nine SCM components spans a wide range of managerial variables by which activities
across the supply chain are integrated. They address physical/technical, as well as behavioral variables.
Due to the framework’s abstract nature, we can only deduce that supply chain design is one SCM
component (under the term “product flow facility structure”, which determines the “network structure for
sourcing, manufacturing, and distributing across the supply chain” [20]).

Referring to the main elements of the SCOR technique as provided in definition 1a (section 2.2), we
found corresponding descriptive constructs in these frameworks, which also define the terminology of
SCM. We mapped the framework’s constructs to SCOR and enriched the definition to some extent. To
further underpin SCOR, we need to study SCM and its antecedents for constructs and findings about
processes, product flows, and their interdependencies along the supply chain.

4.3 Processes

SCM research yields a variety of process classifications, which differ in the level of detail and coverage
(i.e., flow of product, information, and resources). For instance, there are seven classifications provided in
[29], eight in [20], and ten in [25]. When breaking these classifications down to the activities that directly
modify the product with regard to its structure, location, or market, the resulting activities can be grouped
into three basic activities of any firm: (1) buying resources from other firms, (2) combining and
converting these resources into products, and (3) selling these products to customers. These activities are
also constituent to the SCOR technique under the terminology source, make, and deliver, respectively.

11

They correspond to the decision areas that represent the operations management origin of SCM [6, 8].

Product specificity is the second determinant of SCOR processes. The rationale is that stocked,
make-to-order, and engineer-to-order products each require different operational strategies [13]. This
determinant can be traced back to manufacturing management, which uses these types of product
specificity to describe when a particular product is linked to a particular customer order:

− Make-to-stock (stocked product): a particular product is not linked to a specific customer order, but
the order can be fulfilled by any product instance from stock.

− Make-to-order: a particular product is linked to a specific order at the time of order.

− Engineer-to-order, design-to-order: a particular product is linked to a specific order at the time the
collaborative engineering starts.

Operations management has emphasized that dedicated methods are required for these product
specificities [16, 18]. Moreover, specificity is an important determinant for deciding about the decoupling
point, i.e., the tier, where the linkage between a particular product and the order is established [28].

The dependencies between product specificity and supply chain tier must be considered in using the
SCOR technique. Prior to adding further constraints, we must define the two determinants of the
processes – activity type and product specificity – formally. We add these classifications by defining the
SCOR technique in definition 3 and using SCOR’s terminology (management process for activity type).
This definition contains three sets for process categories, management processes, and product specificities
and two functions that map process categories to management processes and product specificities.

Definition 3 (SCOR thread diagram technique). The SCOR thread diagram technique is a tuple
TDT=(C, M, CM, S, CS), where:

− C is the set of process categories c∈C, with C={S1, S2, S3, M1, M2, M3, D1, D2, D3, D4},

− M is the set of management processes m∈M, with M={Source, Make, Deliver},

− CM is a function which maps each process category c∈C onto a management process m∈M, with
CM={S1�Source, S2�Source, S3�Source, M1�Make, M2�Make, M3�Make, D1�Deliver,

D2�Deliver, D3�Deliver, D4�Deliver},

− S is the set of product specificities s∈S, with S={Stock, Order, Engineer, Retail},

− CS is a function which maps each process category c∈C onto a product specificity s∈S, with
CS={S1�Stock, S2�Order, S3�Engineer, M1�Stock, M2�Order, M3�Engineer, D1�Stock,
D2�Order, D3�Engineer, D4�Retail}.

4.4 Product Flows

Product flows are of paramount importance to supply chain design, since they implement the linkages
between actors and their processes. In this section, we clarify the semantics of product flow, which is
regarded as a critical shortcoming of the SCOR technique. We define the semantics by asserting

constraints on the product flow relation, i.e., on F⊆P×P.

4.4.1 Product Flows Within Actors
The rationale for product flows is that each flow must indicate that the preceding process has added value
to the product, i.e., each process adds value to the product up to the process of consumption by the final

12

customer. SCM is also concerned with the value-adding activities that take place within an actor. Thus,
the actor is not perceived as a “black box” of input/output relations, but regarded as a set of value-adding
activities. For this reason, the SCM frameworks contain classifications of such activities [20, 25].

In SCOR, the three management processes of Deliver, Make, and Source span a set of nine potential
product flows as shown in Fig. 2. However, only the downstream flows indicate added value; these flows
are Source to Deliver, Source to Make, and Make to Deliver. In addition, manufacturing is often a
complex activity that adds value in several steps. Therefore, processes of Make can be connected with
other Make processes. The literature denotes these systems as multi-stage manufacturing systems [21].

D S

D M

D D

M S

M M

M D

S S

S M

S D

Fig. 2. Possible product flows inside an actor by management process.

Next, we formulate the constraint C8 for capturing the possible product flows inside an actor.

ID Description Formal definition

C8 Each flow inside an actor is between one
of the following management processes:
Source to Deliver, Source to Make, Make
to Make, or Make to Deliver.

For each f=(pi , pj) with PA(pi)=PA(pj):

 (CM(PC(pi))={Source} ∧ CM(PC(pj))={Deliver}) ∨

 (CM(PC(pi))={Source} ∧ CM(PC(pj))={Make}) ∨

 (CM(PC(pi))={Make} ∧ CM(PC(pj))={Make}) ∨

 (CM(PC(pi))={Make} ∧ CM(PC(pj))={Deliver})

We define the product flow as f=(pi , pj). First, we require that the two processes pi and pj belong to
the same actor, i.e., by referring to the function PA. Second, we enumerate the four allowed combinations
by using the function PC to each process (which yields the process category, e.g., D1) and applying the
function CM (which yields the respective management process, e.g., Deliver).

4.4.2 Product flows between actors
These flows materialize through the transfer of a product from the supplier’s Deliver process to the
buyer’s Source process. The analysis of the dyadic buyer-supplier relationship is an important antecedent
of SCM [2]. We must restrict product flows between actors to buyer-supplier relationships that add value
downstream in the supply chain. Fig. 3 illustrates that these flows take place at the interface of two tiers
(example on the left hand), but not inside the same tier (example on the right hand).

13

…

Actor a

Actor ai

…

Actor aj

…

D S D S

S

S

D

D

Fig. 3. Possible (left) and forbidden (right) product flows between actors.

In constraint C9, we consider a product flow f=(pi, pj), which takes place between two different
actors (we use the function PA to separate the actors). First, the actors must not only be different, but the
actor of process pi must be the supplier of the actor of process pj; hence the tier number of pi must be
greater than that of pj. Finally, we state the buyer-supplier relationship by using the functions CM and PC.

ID Description Formal definition

C9 Each flow between two actors connects a
Deliver process with a Source process
and the preceding actor’s tier is left from
the succeeding actor’s tier.

For each f=(pi , pj) with PA(pi)≠PA(pj):

 N(PT(pi))>N(PT(pj)) ∧

 CM(PC(pi))={Deliver} ∧ CM(PC(pj))={Source}

4.4.3 Dependence on Product Specificity
The specificity of a given product does not change along the supply chain. The reason is that specificity is
defined (as described in section 4.3) by the time the respective product is linked to a particular customer
order. Once a product is linked to an order, the linkage cannot be broken by downstream processes [28],
unless the product is transformed through manufacturing into another product.

First, we look at product flows between two actors as restricted by constraint C9. The source process
in the downstream tier is the activity of buying the product from the upstream tier, thus the specificity of
both processes must be the same (e.g., buying a make-to-order product is only possible from the deliver
process of make-to-order) except for retail products and its respective D4 process. We retrieve the
specificity of both linked processes by using the function CS and define constraint C10.

ID Description Formal definition

C10 Each flow into a Source process of S2 or
S3 starts at a preceding actor’s Deliver
process of the same product specificity.

For each f=(pi , pj) with PA(pi)≠PA(pj)

 ∧ (PC(pj)={S2} ∨ PC(pj)={S3}):

 N(PT(pi))>N(PT(pj)) ∧ CM(PC(pj))={Source}
 ∧ CS(CM(PC(pi)))=CS(CM(PC(pj)))

It is worth noting that D4 was added to the SCOR technique as a variant of D1 (available since
version 6.0). Retail products can be retrieved from either S1 or S2 processes and will then be sold at a
retail store, which maintains the D4 process. We include this case into a specific constraint (C11).

Second, we analyze product flows within actors. Flows within actors describe the value-adding
activities, which can be more complex in terms of number of processes and flows. In particular, we must
pay attention to all four cases mentioned in section 4.4.1 and their interplay.

14

ID Description Formal definition

C11 Each flow into a Source process of S1
starts at a preceding actor’s Deliver process
of specificity Stock or Retail.

For each f=(pi , pj) with PA(pi)≠PA(pj) ∧ PC(pj)={S1}:

 N(PT(pi))>N(PT(pj)) ∧ CM(PC(pi))={Source}
 ∧ CS(CM(PC(pi)))∈{ Stock, Retail}

Let us consider the example shown in Fig. 4, which shows that the actor sells two products. The
stocked product is bought via a S1 process and then sold via a corresponding D1 process. The make-to-
order product results from two subsequent M2 processes, with the first transforming a make-to-order
product into an intermediate product, and the second process, combining it with another stocked product
into the final product. What we are missing so far is the semantics of the Make processes: Manufacturing
transforms productive inputs into products of higher value, thus every Make process transforms the
product. On the contrary, Source does not transform the product, but transfers the product to the next
process of either Make or Deliver. Similarly, Deliver transfers the product to another tier.

S3

S1 D1

S1

D2

D1

S2 M2 M2

Fig. 4. Example of possible and forbidden product flows within an actor.

The issue of product transformation vs. transfer is closely related to product specificity. We
summarize this dependency by analyzing the four cases of product flows within actors.

Source to Deliver transfers a product, which will be directly sold to the customer. The delivery
process may link the product to a particular customer order, thus specificity can increase from S1 to D2.
The S1 process can also transfer the product to D4. These requirements are captured by C12 and C13.

ID Description Formal definition

C12 Each flow from Source of S2 or S3 (pre) to
Deliver (suc) connects to processes of the
same specificity.

For each f with f=(pre, suc) ∧ PC(pre)∈{ S2, S3}

 ∧ CM(PC(suc))={Deliver}:

 CS(CM(PC(pre)))=CS(CM(PC(suc)))

C13 Each flow from Source of S1 (pre) to
Deliver (suc) connects to processes of
specificity Stock, Order, or Retail.

For each f with f=(pre, suc) ∧ PC(pre)={S1}

 ∧ CM(PC(suc))={Deliver}:

 CS(CM(PC(suc)))∈{ Stock, Order, Retail}

Source to Make transfers a product that will be transformed into another product. The specificity
may increase along the supply chain, but not decrease (C14). In the example in Fig. 4, it is forbidden to
link the S3 process with the M2 process, because the manufacturing relies on a product specification, but
this specification would not be available due to the engineer-to-order product of S3.

Make to Make is the product transfer in multi-stage manufacturing. Again, specificity may increase
in succeeding stages, but not decrease (C15).

15

Make to Deliver is the transfer to the last process within the actor. The product flow must respect the
correspondence of specificities (C16).

ID Description Formal definition

C14 Each flow from Source (pre) to Make (suc)
connects processes of the same or higher
specificity.

For each f with f=(pre, suc)

 ∧ CM(PC(pre))={Source} ∧ CM(PC(suc))={Make}:

 (CS(CM(PC(pre)))={Stock}

 ∧ CS(CM(PC(suc)))∈{ Stock, Order, Engineer}) ∨

 (CS(CM(PC(pre)))={Order}

 ∧ CS(CM(PC(suc)))∈{ Order, Engineer}) ∨

 (CS(CM(PC(pre)))={Engineer}

 ∧ CS(CM(PC(suc)))={Engineer})

C15 Each flow from Make (pre) to Make (suc)
connects processes of the same or higher
specificity.

For each f with f=(pre, suc)

 ∧ CM(PC(pre))={Make} ∧ CM(PC(suc))={Make}:

 (CS(CM(PC(pre)))={Stock}

 ∧ CS(CM(PC(suc)))∈{ Stock, Order, Engineer}) ∨

 (CS(CM(PC(pre)))={Order}

 ∧ CS(CM(PC(suc)))∈{ Order, Engineer}) ∨

 (CS(CM(PC(pre)))={Engineer}

 ∧ CS(CM(PC(suc)))={Engineer})

C16 Each flow from Make (pre) to Deliver (suc)
connects processes of the same specificity.

For each f with f=(pre, suc)

 ∧ CM(PC(pre))={Make} ∧ CM(PC(suc))={Deliver}:

 CS(CM(PC(pre)))=CS(CM(suc))

4.5 Correctness Properties

In this section, we summarize the grammar deduction process by describing the usefulness of each
constraint for verifying the correctness of SCOR thread diagrams. Each constraint represents a particular
correctness property. Table 1 shows the correctness properties for the constraints C1 through C16.

16

Table 1. Correctness properties for SCOR thread diagrams.

ID Correctness Property Usefulness

C1 Value-adding processes Determines processes that do not add value to the product.

C2 Value-adding actors Determines actors that do not add value to the product.

C3 Value-adding tiers Determines tiers that do not add value to the product.

C4 Origin tier Determines the existence of the origin tier.

C5 Consumption tier Determines the existence of the consumption tier.

C6 Minimum tiers Determines if the diagram lacks tiers.

C7 Minimum actors Determines if the diagram lacks actors.

C8 Correct product flows inside actors Determines false connections of processes inside an actor.

C9 Correct product flows between actors Determines false connections of processes between actors.

C10 Correct flows into the Source of S2 and S3
from supplier

Determines false usage of product specificity between
actors for S2 and S3.

C11 Correct flows into the Source of S1 from
supplier

Determines false usage of product specificity between
actors for S1.

C12 Correct flows from the Source of S2 and S3
to the Deliver processes inside actors

Determines false usage of product specificity inside actors
for S2 and S3.

C13 Correct flows from the Source of S1 to the
Deliver processes inside actors

Determines false usage of product specificity inside actors
for S1.

C14 Correct flows from Source to Make
processes

Determines false usage of product specificity inside actors
for Source to Make processes.

C15 Correct flows from the Make to Make
processes

Determines false usage of product specificity inside actors
for Make to Make processes.

C16 Correct flows from Make to Deliver
processes

Determines false usage of product specificity inside actors
for Make to Deliver processes.

If a particular constraint is violated by a given diagram, then we are able to (1) identify the incorrect
elements of the model and (2) interpret the reported problem by referring to the informal description of
the respective constraint. For instance, constraint C9 requires that each flow between two actors connects
the Deliver and the Source processes where the preceding actor belongs to the tier on the left of the
succeeding actor’s tier. If this constraint is breached, we characterize the problem as a false connection of
processes between actors. The usefulness of the constraint is that it helps determine such problems.

5 Evaluation

From the perspective of the design science paradigm [17], the artifact that has been developed in this
research is the SCOR grammar. The objective of this evaluation is to demonstrate the usefulness of this
artifact for assessing the correctness of existing SCOR thread diagrams.

5.1 Evaluation Procedure

We obtained models from the SCOR website (http://supply-chain.org/filemanager/active), which provides
both case studies and training material described in either reports or slides. We selected the models based
on size (minimum of 10 processes to exclude “toy” models). The selection was documented and the

17

models were stored in their original format. The evaluation set contained 8 models. Table 2 shows the
characteristics of these models.

Table 2. Basic characteristics of the sample.

ID Source Industry Year |T| |A| |P| |F|

TD1 Cheng et al. Construction 2009 5 6 13 11

TD2 GE Jet engines 2006 5 5 13 11

TD3 KLATencor Service parts 2006 4 5 12 12

TD4 Schenker Logistics 2006 5 7 18 17

TD5 Marine Corps Military deployment 2006 3 7 28 27

TD6 Nortel Telecommunication 1997 4 6 15 14

TD7 SCOR Primer 1997 5 6 11 9

TD8 SCOR Configuration 1997 4 7 20 20

MIN: 3 5 11 9

MAX: 5 7 28 27

MEAN: 4.38 6.13 16.25 15.13

For representing the selected models in a prototype system, we chose a Description Logic-based
approach [5]. Description logic (DL) is a family of formalisms for representing knowledge within a
domain and is well-suited for reasoning about this knowledge. These formalisms have been adopted
successfully for model verification in a number of related areas [3, 31]. For specifying the SCOR
grammar, we employ the Web Ontology Language (OWL 1.0) [38] and its complementing Semantic Web

Rule Language (SWRL) [39]. The latter is used for determining the correct and incorrect model elements
(instances of the ontology) and adding them to specific classes for each constraint C1 through C16.

Each model was manually mapped to the ontology and the assertions stored in an OWL knowledge
base using the Protégé 3.5 editor and framework. Protégé provides full support for both OWL and
SWRL, and has become a reference tool for developing ontology-based applications. The mapping
procedure was required because the original models are not machine-readable (due to the absence of a
data exchange format). Each model was analyzed for correctness by using the built-in reasoner in Protégé
and checking for each constraint separately. The reasoner populated the specific classes with the correct
and incorrect instances.

5.2 Results

The model verification found that seven out of the eight models in the sample contained errors, i.e.,
violated one or more constraints. Collecting this data required performing the verification for each model
separately and then handing the results over to a data analysis tool. The current prototype system is not
designed for presenting the verification results directly in the graphical model. Fig. 5 presents a
visualization of the verification results for model TD2 by highlighting the erroneous processes and
product flows, and identifying the constraints that have been violated (shown in square brackets).

18

StoragePre-Assembly

D1 S1

S2

S1D2M2S1

Ware-
house

D2 D1 S1

S2

D1M2

Final Assembly

Naval
Air Station

Naval
Air Depot

Defense
Supply Center

OEM

Fairchild
Fasteners

Naval Inventory
Control Point

D2-S1 link not
allowed [C11]

D2-S1 link not
allowed [C11] M2-D1 link not

allowed [C16]

Isolated
process [C1]

Fig. 5. Model verification results for model TD2 (four errors identified).

We observed several cases in which the designer apparently used a customized version of the SCOR
technique. While most of these changes are extensions that introduced new constructs, the model TD3
contains modifications of the original constructs. Let us consider the model TD3 shown in Fig. 6.

First, the diagram arranges tiers vertically and uses a specific symbol for vertical processes between
actors of the same tier. This modification, however, does not add information to the underlying formal
representation, but changes the visual presentation. Whether this presentation is more intuitive or better
suited for communicating supply chain design, remains to be assessed. The second modification
introduces compositions of D1 and D4 processes denoted by D1/4. Again, this modification can be
mapped to the formal model without losing information. Specifically, each composite process can be
replaced by two elementary processes (e.g., D1 and D4), which must then be connected to the respective
preceding and succeeding processes of the composite process.

S1

S1

D1M1

System
Manufacturer

Spares
Operations

D
1

S1 D1M1

S
1

Vertical
arrangement

of tiers

Spares
Manufacturer

Symbol
for vertical
processes

D1/4

Symbol for
composite process

of D1 and D4

S1

Field
Service

Fig. 6. Customized SCOR technique used in model TD3.

We summarize the verification results in Table 3. The table shows for each model (TD1 through
TD8) and constraint (C1 through C16) the findings as follows: ‘Ok’ indicates that the constraint is
fulfilled and ‘Error/x’ indicates that x number of model elements breach the respective constraint. For
instance, ‘Error/1’ for C1 means that one process is not linked to any other process. If the model contains
no element relevant to the constraint, then the constraint is not applicable and we indicate this case in the

19

table by a hyphen. For instance, C15 is concerned with links between Make processes; however, no model
in the sample contained any link between such processes.

We calculate two metrics for each model. The process error rate (PER) represents the relative
number of erroneous processes compared to the total number of processes in the model. This metric is
affected by constraint C1, which is the only constraint dealing with processes. For instance, TD1 contains
one such process out of 13 processes, hence the PER is 7.7%. Similarly, the flow error rate (FER)
measures the proportion of erroneous product flows and is dependent on C8 through C16. In addition, we
define the constraint error rate (CER), which signifies the relative number of error-prone models
compared to all models for which the constraint is meaningful. For instance, C12 was breached by two
out of four models that contain relevant product flows and thus CER is 50.0%.

Table 3. Results of model verification.

 TD1 TD2 TD3 TD4 TD5 TD6 TD7 TD8 CER

C1 Error/1 Error/1 Ok Ok Ok Ok Error/1 Ok 37.5%

C2 Ok Ok Ok Ok Ok Ok Ok Ok 0.0%

C3 Ok Ok Ok Ok Ok Ok Ok Ok 0.0%

C4 Ok Ok Ok Ok Ok Ok Ok Ok 0.0%

C5 Ok Ok Ok Ok Ok Ok Ok Ok 0.0%

C6 Ok Ok Ok Ok Ok Ok Ok Ok 0.0%

C7 Ok Ok Ok Ok Ok Ok Ok Ok 0.0%

C8 Ok Ok Ok Ok Error/1 Ok Ok Error/2 25.0%

C9 Ok Ok Error/1 Ok Ok Ok Ok Ok 12.5%

C10 Ok - - Ok Error/2 Error/1 - - 50.0%

C11 Ok Error/2 Error/1 - Error/2 Ok Error/2 Error/1 71.4%

C12 Error/1 Ok - Ok - Error/1 - - 50.0%

C13 - Ok Ok - - - Ok - 0.0%

C14 Ok Ok Ok Ok Ok Ok Ok Ok 0.0%

C15 - - - - - - - - -

C16 Ok Error/1 Ok Ok Ok Ok Ok Error/4 25.0%

PER 7.7% 7.7% 0.0% 0.0% 0.0% 0.0% 9.1% 0.0%

FER 9.1% 27.3% 16.7% 0.0% 18.5% 14.3% 22.2% 35.0%

For further analysis, we divide the sixteen constraints into three larger groups as follows. C1 through
C7 enforce the correct usage of the main constructs of process, tier, actor, and product flow, without
specifically considering their interrelation. C8 and C9 check the correct usage of the construct of
management process, thus Source, Make, and Deliver. Finally, C10 through C16 assess the correct usage
of the construct of product specificity. We aggregate the verification results accordingly in Table 4.

20

Table 4. Results of model verification per constraint group.

Constraint Group TD1 TD2 TD3 TD4 TD5 TD6 TD7 TD8 CER

Usage of the constructs of
process, tier, actor, and
product flow

Error Error Ok Ok Ok Ok Error Ok 37.5%

Usage of the construct of
management process

Ok Ok Error Ok Error Ok Ok Error 37.5%

Usage of the construct of
product specificity

Error Error Error Ok Error Error Error Error 87.5%

5.3 Discussion

The results presented in Table 3 and Table 4 lead to a number of observations. First, we found errors in all
but one model. However, the error-free model TD4 stems from the transport logistics in which all
processes are of make-to-order specificity and no manufacturing takes place. TD4 thus contains only S2
and D2 processes, which describe a product flow with no branches. This could limit the appearance of
syntactic errors. On the other hand, each error-prone model violates two or three constraints.

Second, as shown in Table 3, the highest CER is reported for C11 (71.4%), C10, and C12 (both at
50.0%). All three constraints relate to the usage of product specificity as a determinant of linked processes
from Source to Deliver or Deliver to Source. In general, product specificity appears to be the most
ambiguous construct of SCOR, since Table 4 reveals that its aggregated CER is as high as 87.5%. In the
other two constraint groups, errors are found in three out of the eight models. The management process
construct was used falsely as well: Two models contain a sequence of Make-Deliver-Make as shown in
Fig. 7, whereas only Make-Make would be correct. One model arranged two actors that exchange
products within the same tier instead of separating them into two different tiers (TD3, shown in Fig. 6).

When interpreting the results, in particular the relatively high error rates, we must be aware of the
sample size. Since our sample is too small for further statistical analysis, it did not allow us to provide
evidence in terms of factors that affect the error rate of a particular model. However, we believe that our
initial findings suggest some ambiguity in the existing body of knowledge that is available to supply chain
designers. This knowledge ranges from the SCOR documentation and supplementing training material to
other references and software tools. We also found errors in the two models that originated directly from
the SCOR organization, which were presented at the SCOR Fall Conference 1997 (TD7, TD8).

The proposed methodology and the prototype successfully detect errors in SCOR models. These
errors must be corrected by the supply chain designer. Next, we illustrate how our approach can assist the
designer in correcting incorrect models. We have to consider that often several alternatives exist for fixing
the errors, from which the designer has to choose the alternative that matches the desired structure. For
instance, the model in Fig. 5 shows for the OEM tier an invalid link between the D2 process and the S1
process of the Warehouse tier. There exist at least two alternatives for the designer, i.e., either modifying
D2 to D1 or modifying S1 to S2. We can automatically generate these alternatives and present them to the
designer by deriving a rule from the formal definition of C11 as follows: For each flow f=(pi, pj) in error

class C11, modify the model as follows: CS(CM(PC(pi))):={Stock} ∨ CS(CM(PC(pj))):={Retail}.

21

S1 D1M1

S2 D2M2

D-M link not
allowed [C8]

S1 D1M2

S1 D2M1

D-M link not
allowed [C8]

Fig. 7. Incorrect use of the management process construct in model TD5 (left) and TD8 (right).

In this way, we are able to construct rules for every constraint (by enumerating the alternatives that
are offered by the constraint) and present the alternatives to the designer to choose from. A practical
limitation of this repair approach is that fixing a particular error may cause subsequent errors. For
instance, if the designer changes the S1 process of the Warehouse tier (Fig. 5) into S2, the link to its
succeeding D1 process becomes invalid (violation of constraint C12). These cascading errors could
propagate both upstream and downstream the supply chain and thus arriving at a correct model maybe
somewhat cumbersome. Therefore, assisting the designer in developing correct models from the start is
another direction to take by proactively providing suggestions for linking processes to prevent errors.
Next, we outline how the deduced constraints can be used for assisting the designer in this task.

We consider an upstream design in which the designer defines all the tiers, adds processes to the
right most tier, and then places linked processes in the upstream tiers. For instance, the right most tier
contains a single S2 process denoted by p1, with PC(p1)={S2} and N(PT(p1))=1. Two other tiers exist.
The question is what kind of processes p2 may link to p1 by the flow f1=(p2, p1)? We can generate all
valid answers by analyzing those constraints that are concerned with flows into S2 processes:

− Constraint C8 is not relevant, because it only relates to flows inside an actor. Constraint C9 allows
flows into Source processes from Deliver processes of preceding tiers. Therefore, we use the

definition of this constraint and add an axiom to the design space: (PC(p2):={D1} ∨ PC(p2):={D2} ∨

PC(p2):={D3} ∨ PC(p2):={D4}) ∧ (N(PT(p2)):=2 ∨ N(PT(p2)):=3).

− Constraint C10 helps us in suggesting the right product specificity of p2, i.e., specificity of p2 must be
the same as that of p1. We add to the design space: CS(CM(PC(p2))):=CS(CM(PC(p1))).

− Next, we can assess the design space, which consists of two axioms. Since CS(CM(PC(p1))) is given
in the model as Order, we replace the second axiom by CS(CM(PC(p2))):={Order}. Therefore, the

design space is further reduced to: PC(p2):={D2} ∧ (N(PT(p2)):=2 ∨ N(PT(p2)):=3).

Finally, the designer can select from these two suggestions by placing a D2 process as an input for
the S2 process, in either tier left of the customer tier. In this way, we are able to generate candidate
incoming flows for all the process categories and suggest them to the designer to choose from. We have
illustrated the required analytical steps for the upstream design only. In case of the downstream design,
the analysis would be quite similar, by taking from the constraint definitions those parts that are
concerned with the succeeding process and converting them into axioms.

22

5.4 Implications

Our research has implications for both the users and developers of SCOR. Users should carefully revisit
the existing SCOR documentation and base their supply chain design on a formal grammar instead of
being inspired by only the brief descriptions and example models. Otherwise, they are in danger of
developing models that may contain subjective interpretations of the technique and thus cannot be
exchanged, formally analyzed, and shared with supply chain stakeholders. This risk would also hamper
benefiting from the two posited advantages of reference models for supply chain design. The evaluation
results suggest that the product specificity construct leads to a number of design alternatives that must be
carefully evaluated by the user to select a correct design. At least, its original definition lacks clarity to
enable its correct usage. However, the SCM literature provides sufficient underpinning, as discussed in
section 4.4.3, for clarifying the syntax and semantics of processes and product flows under consideration
with respect to product specificity.

Whereas the proposed methodology successfully detects incorrect models, our research also has
implications for the use of validated models and the development of decision support systems (DSS)
within SCM. These implications concern the third use case of the SCOR technique (discussed in section
1), namely, supply chain evaluation. The DSS must assist the designer in creating alternative designs and
assessing their performance through appropriate metrics. For this type of DSS, the proposed artifact
provides not only the formalization for model representation and storage, but also automatic generation of
alternative designs. The difficulty in generating alternative designs is the sheer number of alternatives that
may result from adding, removing, and modifying each single model element (processes, flows, actors,
and tiers). The proposed artifact could be used for answering questions such as what downstream and
upstream alternatives exist for a particular process. For instance, the M3 process in Fig. 1 has three
upstream processes of category S1 and S2. We can generate alternatives for either process by utilizing the
constraint that is concerned with these processes, namely, C14. The formal definition of C14 spans the
design space, which consists of two alternatives for each upstream process (S2 and S3 for the S1 process,
and S1 and S3 for the S2 process). In this way, the proposed constraints could be used by the DSS for
generating alternative designs and presenting them to the designer. Similarly, while correcting invalid
models, each alternative for a particular process may result in subsequent errors, both downstream and
upstream. In this case, the DSS could apply the “repair” methodology as described in the preceding
section to avoid cascading errors.

6 Conclusion and Future Work

This research presents a supply chain grammar and analysis techniques for SCOR-based supply chain
design. The grammar adapts SCM constructs and rules to avoid making assumptions about supply chain
design that are not justified by the literature.

There are three main results of this work. First, this research demonstrates that the SCM literature
provides the rules to be able to effectively restrict the design space that is spanned by the SCOR
technique. This research could be extended to support reverse product flows (return processes),
information flows (plan processes) as well as other parts of the SCOR Model. However, any endeavor
must first clarify the main constructs for primary product flows, which is the main focus of our research.

23

Second, our work represents an effort to improve the understanding of supply chain designs across
organizational boundaries. Specifically, it highlights the need to clearly define the formal semantics of
primary product flows in SCOR, which is missing so far. The initial evaluation suggests that the current
adoption of the SCOR technique is negatively impacted by its informal description, which leads to error-
prone supply chain designs.

Third, the grammar is an initial step in understanding the many factors that affect the correctness of
models created, the perceptions of model users, and the performance of individuals who use these models
for solving problems in a particular domain. Specifically, it is still unknown how a particular error rate is
correlated with factors such as the design environment (e.g., grammar used, software tool support) and
domain (e.g., industry, size and complexity of the diagram). These effects could be studied by
incorporating the general findings from conceptual modeling research [40].

Our future work will use the deduced supply chain grammar to study the factors that affect the extent
to which model users understand the domain semantics that is conveyed in a thread diagram. Our current
study suggests that the original version of the SCOR grammar, which is provided in the SCOR handbook,
causes difficulties for effectively defining mappings between real-world phenomena and their
representations. For instance, the original grammar lacks rules that guide designers how to connect
processes under consideration of the supply chain context. These rules were added by deduction from the
existing SCM literature. Positing that deficiencies in the grammar exist, we plan to empirically validate in
a laboratory experiment, the effects of such deficiencies on the user’s problem solving performance when
using models generated from the grammar.

Acknowledgements

The work of the first author has been partly supported by the German Ministry of Education and Research
under the project InterLogGrid (BMBF 01IG09010E). The work of the second author has been partly
supported by Sogang Business School’s World Class University Program (R31–20002) funded by Korea
Research Foundation, and Sogang University Research Grant of 2011.

References

[1] W.M.P. van der Aalst, Formalization and verification of event-driven process chains, Information
and Software Technology 41 (1999) 639–650.

[2] J.C. Anderson, H. Håkansson, J. Johanson, Dyadic business relationships within a business network
context. Journal of Marketing 58 (1994) 1–15.

[3] A. Ankolekar, M. Paolucci, K. Sycara, Towards a formal verification of OWL-S process models, in:
Y. Gil, E., Motta, V. Benjamins, V., M. Musen (Eds.), The Semantic Web – ISWC, Springer, Berlin,
2005, pp. 37–51.

[4] M. Arns, M. Fischer, P. Kemper, C. Tepper, Supply chain modelling and its analytical evaluation,
Journal of the Operational Research Society 53 (2002) 885–894.

[5] F. Baader, I. Horrocks, U. Sattler, Description logic, in: F. van Harmelen, V. Lifschitz, B. Porter
(Eds.), Handbook of Knowledge Representation, Springer, Berlin, 2007, 135–179.

[6] B.M. Beamon, Supply chain design and analysis: models and methods, International Journal of
Production Economics 55 (1998) 281–294.

24

[7] J. Becker, R. Knackstedt, A. Stein, Extending the supply chain operations reference model:
potentials and their tool support, in: ECIS 2007 Proceedings, Paper 123, 2007.

[8] K. Burgess, P.J. Singh, R. Koroglu, Supply chain management: a structured literature review and
implications for future research, International Journal of Operations & Production Management 26
(2006) 703–729.

[9] I.J. Chen, A. Paulraj, Towards a theory of supply chain management: the constructs and
measurements. Journal of Operations Management 22 (2004), 119–150.

[10] P.D. Cousins, B. Lawson, B. Squire, Supply chain management: theory and practice – the emergence
of an academic discipline?, International Journal of Operations & Production Management 26 (2006)
697–702.

[11] S. Croom, P. Romano, M. Giannakis, Supply chain management: an analytical framework for
critical literature review, European Journal of Purchasing & Supply Management 6 (2000) 67–83.

[12] R.M. Dijkman, M. Dumas, C. Ouyang, Semantics and analysis of business process models in
BPMN, Information and Software Techology 50 (2008) 1281–1294.

[13] M.L. Fisher, What is the right supply chain for your product? Harvard Business Review 75 (1997)
105–116.

[14] B.J. Gibson, J.T. Mentzer, R.L. Cook, Supply chain management: the pursuit of a consensus
definition, Journal of Business Logistics (2005) 17–25.

[15] S. Gonnet, M. Vegetti, SCOntology: a formal approach toward a unified and integrated view of the
supply chain, in: M.M. Cunha, B.C. Cortes, G.D. Putnik (Eds.), Adaptive technologies and business
integration: social, managerial and organizational dimensions, IGI Global, Hershey, 2007, 137–158.

[16] A. Gunasekaran, E.W.T. Ngai, Build-to-order supply chain management: a literature review and
framework for development, Journal of Operations Management 23 (2005) 423–451.

[17] A. Hevner, S. March, J. Park, S. Ram, Design science in information systems research, MIS
Quarterly 28 (2004) 75–105.

[18] C. Hicks, T. McGovern, C.F. Earl, Supply chain management: A strategic issue in engineer to order
manufacturing, International Journal of Production Economics 65 (2000) 179–190.

[19] S.H. Huan, S.K. Sheoran, G. Wang, A review and analysis of supply chain operations reference
(SCOR) model, Supply Chain Management 9 (2004) 23–29.

[20] D.M. Lambert, M.C. Cooper, Issues in supply chain management, Industrial Marketing Management
29 (2000) 65–83.

[21] G. Liberopoulos, Y. Dallery, A unified framework for pull control mechanisms in multi-stage
manufacturing systems, Annals of Operations Research 93 (2000) 325–355.

[22] J. Lee, G.M. Wyner, B.T. Pentland, Process grammar as a tool for business process design, MIS
Quarterly 32 (2008) 757–778.

[23] A. Lockamy, K. McCormack, Linking SCOR planning practices to supply chain performance: an
exploratory study, International Journal of Operations & Production Management 24 (2004) 1192–
1218.

[24] J. Mendling, H.M.W. Verbeek, B.F. van Dongen, W.M.P. van der Aalst, G. Neumann, Detection and
prediction of errors in EPCs of the SAP reference model, Data and Knowledge Engineering 64
(2008) 312–329.

[25] J.T. Mentzer, W. DeWitt, J.S. Keebler, S. Min, N.W. Nix, C.D. Smith, Z.G. Zacharia, Defining
supply chain management, Journal of Business Logistics 22 (2001) 1–25.

[26] P.-A. Millet, P. Schmitt, V. Botta-Genoulaz, The SCOR model for the alignment of business
processes and information systems, Enterprise Information Systems 3 (2009) 393–407.

[27] T. Moyaux, P. McBurney, M. Wooldridge, A supply chain as a network of auctions, Decision
Support Systems 50 (2010) 176–190.

25

[28] J. Olhager, Strategic positioning of the order penetration point, International Journal of Production
Economics 85 (2003) 319–329.

[29] B.T. Pentland, Process grammars: A generative approach to process redesign, Working Paper Series
178, MIT Center for Coordination Science, Cambridge, MA, 1994.

[30] B.T. Pentland, Grammatical models of organizational processes, Organization Science 6 (1995)
541–556.

[31] D. Rodríguez, E. García, S. Sánchez, Defining software process model constraints with rules using
OWL and SWRL, International Journal of Software and Knowledge Engineering 20 (2010) 533–
548.

[32] A. Röder, B. Tibken, A methodology for modeling inter-company supply chains and for evaluating a
method of integrated product and process documentation, European Journal of Operational Research
169 (2006) 1010–1029.

[33] O. Sakka, P.-A. Millet, V. Botta-Genoulaz, An ontological approach for strategic alignment: a
supply chain operations reference case study, International Journal of Computer Integrated
Manufacturing 24 (2011) 1022–1037.

[34] S. Stephens, Supply chain operations reference model 5.0: a new tool to improve supply chain
efficiency and achieve best practice, Information Systems Frontiers 3 (2001) 471–476.

[35] G. Steward, Supply-chain operations reference model (SCOR): the first cross-industry framework
for integrated supply chain management, Logistics Information Management 10 (1997) 62–67.

[36] Supply-Chain Council, Supply chain operations reference model (SCOR®), Version 9.0,
Washington DC, 2009.

[37] C.J. Vidal, M. Goetschalckx, Strategic production-distribution models: A critical review with
emphasis on global supply chain models, European Journal of Operational Research 98 (1997) 1–18.

[38] W3C, OWL web ontology language, W3C recommendation 10 February 2004. URL:
http://www.w3.org/TR/owl-ref/ (accessed on April 12, 2012)

[39] W3C, SWRL: a semantic web rule language combining OWL and RuleML, W3C Member
Submission 21 May 2004. URL: http://www.w3.org/Submission/SWRL/

[40] Y. Wand, R. Weber, Information systems and conceptual modeling – a research agenda, Information
Systems Research 13 (2002) 363–376.

[41] W.Y.C. Wang, H.K. Chan, D.J. Pauleen, Aligning business process reengineering in implementing
global supply chain systems by the SCOR model, International Journal of Product Research 48
(2010) 5647–5669.

[42] M. Zdravković, H. Panetto, M. Trajanović, A. Aubrey, An approach for formalising the supply chain
operations, Enterprise Information Systems 5 (2011) 401–421.

