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Abstract. Many companies use supply chain models for designing the flow of goods and services from 
their suppliers all the way up to the final customers. Over the past 15 years, the Supply Chain Operations 
Reference Model (SCOR) has become a widespread modeling technique for designing such supply chains 
and sharing design information with supply chain stakeholders. However, neither the syntax nor the 
semantics of SCOR are well defined. This limitation has important consequences for its usage: Supply 
chain models may be ambiguous and their correctness cannot be verified. We address this problem by 
mapping SCOR supply chains onto graphs and formalize the semantics of SCOR. The mapping is driven 
by constructs from the supply chain management literature. The proposed artifact is a supply chain 
grammar, which we apply to a set of SCOR models taken from industry sources. We show the grammar’s 
usefulness by verifying the correctness of these models using analytical techniques. 
 
Highlights: 

− We deduce a grammar of the SCOR modeling technique from SCM literature. 
− We propose correctness properties for SCOR-based designs. 
− We demonstrate the usefulness of the grammar for detecting errors in existing models. 
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1 Introduction 

Supply chain design is a critical business problem. For many industries, supply chains have become an 
important focus for competitive advantage. With the increasing global division of labor, the performance 
of a single company depends more and more on its ability to maintain effective and efficient relationships 
with its suppliers and customers. Thus, managerial decisions are moving from an organizational scale to a 
supply chain scale [20]. Supply chain design is the task of determining the basic, long-term structure of 
the supply chain by defining its elements, objectives, locations, and key organizations [37]. The role of 
Information Systems (IS) to support this task has recently been the subject of inquiry. 

In general, supply chain design faces two difficulties. First, the design space contains a vast number 
of alternatives, which makes it hard for designers to evaluate and select the best alternative. Second, 
designing a supply chain incorporates stakeholders from the supply and demand side, which requires 
sharing and understanding design information by various parties. These two difficulties can be mitigated 
through reference models that: (1) restrict the design space by providing core constructs that can be 
configured under certain design constraints, and (2) define a common terminology for sharing designs 
across organizations. Supply chain management (SCM) has adopted this idea in the form of the Supply 

Chain Operations Reference Model (SCOR) [34, 35]. Over the past 15 years, SCOR has become a 
widespread modeling technique for supply chain design. It is promoted by a stellar group of firms from 
various industries and can be regarded as a best practice. Research has made use of SCOR for designing 
both descriptive and analytical methods for various supply chain problems, in particular, performance 
management [23, 41], configuration [32], and market-based balancing of demand and supply [27]. 

The main disadvantage of SCOR is that neither its syntax nor its semantics is well defined. A formal 
specification of SCOR in the form of a grammar does not exist. The modeling technique is only described 
in a handbook [36], which provides a reference to model elements with simple example models that don’t 
provide much explanation. The lack of well-defined syntax and semantics has severe consequences. If 
SCOR users interpret the informal description of the technique in different ways, the supply chain models 
built using SCOR will become ambiguous and potentially error-prone. This practice may result in 
syntactically incorrect models that cannot be used by any third party. Software vendors who provide 
SCOR modeling tools are in danger of implementing the technique incorrectly. Ultimately, the two 
objectives of reducing the design space and enabling cross-organizational information sharing cannot be 
met. 

Incorrect supply chain models affect the managerial use of these models. We briefly discuss the 
problems resulting from incorrect models by referring to the three use case of the SCOR technique [36]: 

− Supply chain description aims at providing an unambiguous description of an actual or planned 
supply chain for parties that are interested or involved in this supply chain. Incorrect design manifests 
in configuring the constructs of the SCOR technique falsely, for example, invalid linkage of 
constructs or missing constructs. If these deficits cannot be detected and repaired, the description is 
only understandable by the designer and the individuals that share the designer’s interpretation. 
Hence, the model is limited to a small group and does not extend to all the supply chain stakeholders. 

− Supply chain measurement is concerned with measuring the performance of connected activities and 



3 

the entire supply chain. For this purpose, the technique provides a standard set of metrics (e.g. cycle 
time, cost, flexibility) and standard formulae for analyses, which rely on correct models as outlined in 
the supply chain description. For incorrect models, the aggregation process would yield either 
incorrect or no results. Hence, the supply chain performance cannot be correctly measured. 

− Supply chain evaluation is the task of assessing different designs and selecting the best configuration 
with regard to certain criteria. These criteria include metrics as defined by the SCOR technique. 
Evaluation is an iterative process of design (i.e., creating alternative models) and metrics-based 
measurement. If the measurement yields incorrect or no result for at least one model, then the 
evaluation will also become incorrect (by comparing configurations that differ due to the 
interpretation of the technique) or incomplete and not feasible (due to missing data). 

Adding a formal specification to SCOR is non-trivial, unless we are able to get this information from 
SCOR’s inventors or at least articulate their interpretation explicitly. However, SCOR was invented by a 
dynamic group of individuals who worked over a long period in a more or less informal organization. 
Hence, it is difficult to elicit this information from this group. What we need is a supply chain grammar 
that consists of constructs for supply chain design and rules that specify allowable combinations of these 
constructs. There are two basic approaches for defining this grammar: deduction and induction. Grammar 
deduction defines constructs and rules by analyzing relevant theories and axioms. Grammar induction 
learns constructs and rules from a set of observations – here, the SCOR supply chain models. The latter’s 
precision, however, is negatively affected by the share of incorrect models in the set of observations. 

Current solutions fall into the category of grammar deduction. However, no research endeavor has 
yet used the existing body of knowledge from SCM research for deduction. Instead, the main source of 
deduction is the informal description of SCOR, which is then interpreted by the respective researcher. The 
disadvantage of these approaches is that the deduction is not made explicit to allow for reproducibility. 

We address the problem of the lack of explicit definition of SCOR by mapping SCOR supply chains 
onto directed graphs and formalizing the syntax and semantics. The mapping is a deduction process 
supported by the constructs from the SCM literature. These constructs enable us to enrich SCOR with 
additional constraints that have a strong theoretical underpinning. Thus, the objectives of this research are 
to: (1) develop the syntax and semantics of SCOR in the form of a supply chain grammar that allows for 
assessing the correctness of supply chain design, and (2) apply this artifact to a set of SCOR models to 
demonstrate its usefulness for model verification. The contributions of this research are the formal 
specification (grammar) of SCOR and analysis techniques for SCOR-based supply chain design. 

The remainder of this paper is organized as follows. In section 2, we briefly introduce the SCOR 
technique and provide preliminary notions that will be used for enrichment by grammar deduction. In 
section 3, we discuss the approaches to the correctness of supply chain design and compare our work with 
the relevant literature. In section 4, we derive specific constraints on supply chain design from the SCM 
literature and provide the grammar. In section 5, we demonstrate the usefulness of our proposed grammar 
in verifying the correctness of SCOR models taken from industry sources. Section 6 concludes the paper 
and outlines some of our future work. 
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2 Preliminaries 

2.1 SCOR Technique 

SCOR consists of an intuitive graphical supply chain description language and a set of supply chain 
metrics that can be associated with supply chain activities. The graphical language is targeted for the 
business audience, who uses this language for effective communication of supply chain structures at 
different levels of abstraction. At the strategic level, SCOR provides a modeling technique for primary 
product flows; the resulting model is called a SCOR thread diagram. The designer can then add details to 
these diagrams by incorporating plan processes (information flow), secondary product flows (return of 
products to the supplier), and describing more fine-grained activities associated with the primary product 
flow, e.g., receiving orders, packaging, and routing shipments. These activities can be configured from a 
reference set of several hundred so called process elements. In the following, we consider only primary 
product flows, since this level represents the strategic configuration of supply chains. 

A thread diagram shows the flow of products (including tangible goods and services) as a chain of 
linked activities. An example diagram is shown in Fig. 1. The technique provides the following elements: 

− Process is an activity of either sourcing, manufacturing, or delivering a product (symbol: arrow-
shaped rectangle). The symbols can have different colors to signify the type of activity; however, the 
color scheme is not precisely defined in the SCOR technique. 

− Product flow represents the transfer of a product from one process to another (symbol: arrow). 

− Actor is an organizational entity that executes one or more processes (symbol: label of process). 

− Tier reflects the level of involvement of actors when considering the entire supply chain. Tiers 
arrange actors from left to right (symbol: vertical swim lane). 
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Fig. 1. Example SCOR thread diagram. 

If a tier contains only one actor, then it is sufficient to add the actor label to only one process 
(instead of labeling all the processes). For example, in Fig. 1, the M3 process as well as all the other 
processes in this tier are executed by the “Engine Manufacturer” actor. 

SCOR differentiates processes for primary product flows by the degree of customization (product 
specificity): (1) stocked products, (2) make-to-order products being manufactured for a specific customer 
order, and (3) engineer-to-order products being designed and manufactured to a specific customer 
requirement. This differentiation is then applied to all the processes of sourcing (S), manufacturing (M), 
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and delivering (D) products. Each process is thus encoded by a 2-character code, which denotes the 
process category, e.g., D2 for delivery of make-to-order products. This differentiation is part of SCOR 
since 1997 (version 2.0) and was slightly modified in 2003 (version 6.0) by including the D4 process 
category for the delivery of retail products. This product specificity exists only for delivery processes. 

2.2 Preliminary notions 

We define the basic notions that formally capture the main elements of the SCOR technique for thread 
diagrams (as introduced in section 2.1). These notions will serve as the baseline for adding constraints on 
correct diagrams in the succeeding sections. They are minimal in the sense that we avoid making 
assumptions about the technique that may not be justified by relevant theory. 

Definition 1a (SCOR thread diagram). A SCOR thread diagram is a directed graph TD=(P, F, A, 
T, PC, PA, PT) where: 

− P is a finite set of processes p∈P, 

− F is a finite set of product flows f∈F with F⊆P×P, 

− A is a finite set of actors a∈A, 

− T is a finite set of tiers t∈T, 

− PC is a function which maps each process onto a process category with PC:P�{S1, S2, S3, M1, M2, 
M3, D1, D2, D3, D4}, 

− PA is a function which maps each process onto an actor with PA:P�A, 

− PT is a function which maps each process onto a tier with PT:P�T. 

Using this definition, the thread diagram shown in Fig. 1 can be formally defined by all components 
of TD. For instance, the diagram contains eleven processes, which must be numbered, e.g., P={p1, p2, .., 
p11}. Each arrow in the diagram denotes a product flow, e.g., F={(p1, p2), (p3, p4), ..}. The processes p1 
and p3 belong to the process category D1, thus PC={(p1�D1), (p3�D1), ..}, and are contained in the 
Supplier tier, thus PT={(p1�Supplier), (p3�Supplier), ..}. 

3 Related Work 

3.1 Supply Chain Design 

Two dimensions are constituent to the task of supply chain design. The process dimension relates to 
answering the question which activities must be performed by the designer in what order to produce the 
supply chain model. SCM research yields a plethora of analytical models and optimization methods [6, 
37]. The result dimension relates to the constructs, i.e., the conceptual vocabulary of the problem domain, 
and the formalisms used for articulating these constructs. Correctness of supply chain design is the 
ultimate concern of the result dimension. The SCOR technique addresses the result dimension. 

The SCOR technique has been documented in a handbook [36], which provides definitions of all the 
aforementioned elements. The handbook, however, falls short of providing a formal specification in the 
form of a grammar that is unambiguous and free of interpretation. It also provides very little information 
on how to link processes under consideration for process categories, actors, and tiers. The lack of a formal 
grammar has led to the conclusion that SCOR is less useful for analyzing supply chains through 
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quantitative means [4, 19]. Arns et al. argue for reducing the role of SCOR to description, whereas all 
model analysis tasks would require a more capable language providing a well-defined execution 
semantics [4]. 

The literature yields several approaches for amending SCOR with a grammar. These approaches 
differ in the specification language used and the way they augment the SCOR technique. 

Becker et al. [7] choose the Entity-Relationship-Model (ERM) for specifying a meta-model of 
SCOR. The rationale is that the ERM is adequate for capturing the SCOR constructs as well as the 
resulting meta-model can easily be transformed into a database schema for model storage and retrieval. 
An interesting aspect of the proposed meta-model is the process category condition, which enforces that 
processes of a certain category must be connected with processes of another category (e.g., “make-to-
stock” is proceeded by “deliver make-to-stock”). These conditions may help in assessing the correctness 
of supply chain designs, though they have not been made explicit, but were illustrated by an example 
only. Unfortunately, this research provides little information on how the meta-model was constructed. 
The authors try to provide convincing arguments for the meta-model and report about a prototype 
implementation; however, the prototype is not concerned with correctness of supply chain designs. 

Millet et al. [26] propose a set of possible relationships between process categories denoted as rules. 
They assume that designing a supply chain implicates a certain body of rules. The explication process for 
these rules is, however, not described. The rules are not formally specified. In addition, the rule set is at 
best incomplete, since it misses product flows between different Make processes. 

SCOntology is an ontological approach to formalizing the SCOR technique [15]. The rationale for 
using the Web Ontology Language (OWL) [38] is that OWL provides more expressiveness for defining 
concepts and their interrelations than ERM. The scope of the proposed SCOR ontology is defined by the 
so called competency questions. Insofar as these competency questions are concerned, a justification for 
them is not provided by these authors. In addition, the ontology is described using graphical means only, 
and thus lacks axioms. A brief case study is supplied to demonstrate the validity of the proposal. 

The ontological approach by Sakka et al. [33] does not interpret the textual descriptions contained in 
the SCOR handbook, but starts with the meta-model that is implemented by the software tool 
ARIS/SCOR. This meta-model, which is specified in ERM, is then mapped onto an OWL ontology. The 
advantage is that this approach preserves all constructs and rules contained in the baseline meta-model. 
However, Sakka et al. admit that the designers of ARIS/SCOR were interpreting the SCOR handbook and 
thus made assumptions, which are unknown to the tool user. 

The most comprehensive ontological approach is SCOR-FULL [42], which goes beyond SCOR 
thread diagrams by including SCOR metrics and input/output information. This ontology is aimed at the 
semantic interoperability of supply chain designs, without paying attention to correctness. Similar to [15], 
the rationale of this ontology is limited to answering an initial set of competency questions. 

Our approach differs from existing research as follows. First, by grounding the grammar deduction 
on constructs and rules from the SCM literature, we aim at reducing the risk of interpreting the SCOR 
handbook in a subjective way. This risk may lead to a grammar that contradicts the insights from SCM 
research. Second, our research is informed by the use of ontology languages, but the proposed grammar is 
independent from the usage of a particular ontology language. Third, we address the formal correctness of 
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supply chain design and aim at providing specific means for assessing this property. 

3.2 Business Process Management 

Much progress has been made on developing methodologies for assessing and preserving the correctness 
of business process models. Since supply chain design also describes the business activities carried out 
(those for supplying products from suppliers to the final customers), we review contributions from the 
business process management (BPM) literature that may be beneficial for supply chain design. 

Process verification determines whether a process model complies with a specified structure and 
behavior. Verification depends foremost on the existence of formal semantics of the process description 
language used. Many widely used languages for business process modeling lack formal semantics, e.g., 
Event-driven Process Chains (EPC) [1] and the Business Process Modeling Notation (BPMN) [12]. 
Therefore, BPM research has investigated their mapping to more powerful modeling techniques, which 
also supply analysis techniques for correctness properties. Of particular significance are the works that 
adopt analysis techniques using Petri-nets. Mendling et al. [24] propose a Petri-net approach for detecting 
errors in EPCs and apply it to a set of real-world EPCs taken from the SAP Reference Model. They show 
that these EPCs are error-prone, because the model designers did not conform to the EPC semantics. 

Supply chain design shows similarities to business process modeling. However, we need to be aware 
of important differences between product flow and control flow. The SCOR technique does not make the 
semantics of the product flow construct explicit. For instance, let us consider the diagram given in Fig. 1. 
The process of category M3 has three ingoing arcs (sourcing) and two outgoing arcs (delivery). Does it 
mean that this process transforms all three ingoing products into the two outgoing products? Or can this 
process be executed if at least one ingoing arc is activated? The answer cannot be given, because the 
execution semantics is unclear. We need to keep in mind that supply chain design is concerned with 
defining the structure of supply chains, not their behavior. For instance, SCOR lacks logical connectors, 
which are common in control flow descriptions. 

Arns et al. [4] combine the SCOR technique with a business process language as follows: They 
propose using a custom notation called ProC/B; the advantage is that ProC/B models can be translated 
into Petri-nets, which allow for analyzing behavioral properties to a great extent. Activities in such 
models are encoded as SCOR process categories. The only contribution of SCOR is the vocabulary for 
activities. This approach results in two modeling phases: First, a SCOR thread diagram is created. Then, 
its activities and flow relationships will be used for creating the ProC/B model. The disadvantage is that 
the second phase requires decisions to be made about the control flow, but this information is not supplied 
by the diagram from the first phase (no execution semantics of process categories). 

Grammar was first used as a metaphor for describing business processes in organizational studies 
and has since then spread to BPM research. Pentland [30] proposed a systematic approach for developing 
models of organizational processes by adopting the grammar metaphor. This approach was then extended 
by Lee et al. [22] for using process grammar for constraining the design space of business processes. The 
objective of constraining also holds for the SCOR reference model, which should help creating supply 
chains by referring to valid supply chain structures that are supplied by only SCOR. Our research is 
influenced by the grammar metaphor. Unlike Lee et al., who use production rules as constructs for 
context-free grammars, we employ graph algebra that allows asserting constraints on valid graphs. 
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Surprisingly, Pentland also proposes in one of his early works [29] the process grammar approach 
for supply chains. He argues that supply chains are well-suited for grammars because of their repetitive 
constituents, high degree of modularization, and centering on product flows, which all result in a rather 
limited set of supply chain constructs. He defines a supply chain grammar of seven constructs (activities) 
and nine “tentative” supply chain patterns. This grammar was motivated by experiences gained from three 
case studies. However, its expressiveness is severely limited, e.g., patterns are sequences of activities 
only, with no further constraints on valid linkages as well as no formalization of the grammar. 

4 Grammar Deduction 

In this section, we describe the process of deducing the grammar for SCOR thread diagrams from the 
SCM literature. For each element of the basic model (as defined in section 2.2), we add theoretical 
findings that further constrain the supply chain design. 

4.1 Supply Chain Literature 

Supply chain is the unit of analysis of SCM, which over the past 30 years has evolved from a field in 
operations management into a discipline of management research [10]. The recent past has seen an 
increasing debate about the state of SCM as a discipline [8] as well as a call for theory building [9, 20]. 

For our purpose of grammar deduction, it is important to state that the majority of SCM researchers 
use existing theories from other disciplines to explain different aspects of the supply chain [8]. SCM is 
inter-disciplinary, which encompasses logistics, purchasing, operations management, marketing, strategy, 
and others. Therefore, the grammar deduction will include both supply chain body of knowledge and its 
antecedents. The scope of the body of knowledge is constrained by supply chain design as defined in 
section 1, i.e., determining the long-term, basic structure of supply chain activities, which are connected 
by product flows. We are thus interested in constructs that are commonly used in SCM research to 
describe these structures. Due to the absence of a single “original” theory of supply chain, we extract 
relevant constructs from seminal SCM works in the related fields. These constructs are higher order 
abstractions that can be used in supply chain models, specifically in supply chain design (descriptive 
nature of constructs). 

4.2 Deduction from SCM Frameworks 

Descriptive constructs can be found in research that condenses the terminology used in SCM and frames 
the main issues into conceptual frameworks. These works represent the effort to consolidate the abundant 
but disparate literature [11, 14, 25]. An important contribution stems from Lambert and Cooper [20], 
whose framework consists of three main elements: Supply chain network structure includes the firms and 
the links between these firms. Supply chain business processes move the product from supplier to the 
customer, and SCM components are managerial variables that are used to integrate the business processes. 

There are strong ties between these elements and supply chain design as discussed below. The 
Network structure answers the following question: who are the relevant supply chain members (in SCOR: 
actors) with whom to link the processes? Relevance is determined by examining whether an actor carries 
out value-adding activities to produce a specific output for a customer or market. Therefore, supporting 
actors, who for example only provide resources to other actors, are not the unit of analysis. We deduce 
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that: (1) every actor’s processes must be linked to at least one process, and (2) no actor exists without 
such a process. Using formal notion, we represent these two constraints C1 and C2 as follows: 

ID Description Formal definition 

C1 Each process p has at least one incoming 
or outgoing product flow f. 

For each p∈P there exists at least one f∈F 

with f=(m, p) or f=(p, m), and m∈P, m≠p. 

C2 Each actor a carries out at least one 
process p. 

For each a∈A there exists at least one p∈P 
with PA(p)=a. 

The framework further defines structural dimensions. The Horizontal structure introduces the 
construct of tier, which is defined as the set of actors sharing the same horizontal position within the end 
points of the supply chain. Thus, all tiers can be arranged in graphical models with no overlaps. It has 
become common practice to place the final customer as the right most tier; this holds also true for the 
SCOR technique. When referring to a particular tier, all the tiers to its left are called upstream and those 
to the right are called downstream. For expressing the horizontal segmentation, we first introduce a 
numbering scheme for tiers by extending the definition of the thread diagram (definition 1b). The function 
N assigns an integer to each tier; the tier number ranges from 1 to |T| for the total number of tiers. 

Definition 1b (SCOR thread diagram). A SCOR thread diagram is a directed graph TD=(P, F, A, 
T, PC, PA, PT, N) where N is a function that defines the order of tiers, N(T):={1,..,|T|}. 

Using this definition, the formal representation of the diagram shown in Fig. 1 can be enriched as 
follows. The diagram is made of three tiers T=({Supplier, Manufacturer, Customer)}, which are arranged 
from left to right. Therefore, we add N=({Supplier� 3, Manufacturer� 2, Customer� 1)}. Then, we add 
the constraint C3, which prevents the existence of “empty” tiers. 

ID Description Formal definition 

C3 Each tier t contains at least one process p. For each t∈T there exists at least one p∈P with PT(p)=t. 

The Vertical structure refers to the number of actors within each tier. Depending on the number, a 
tier may be characterized as rather narrow or wide. The narrowest tier is a tier that contains only one actor 
and process; this requirement is already captured by C3 and C2. 

The Horizontal position describes the actor’s closeness to the point of origin and the distance from 
the point of consumption of the supply chain. The point of origin is the tier for which no further supplier 
exists (tier denoted by N=|T|). The point of consumption is the tier in which no further value is added, but 
the product is consumed (tier denoted by N=1). For SCOR, we deduce that every thread diagram has: (1) 
one origin tier that includes at least one process with no incoming product flow, and (2) one consumption 
tier that includes at least one Source or Deliver process with no outgoing product flow. To be able to state 
constraints on the number of incoming and outgoing flows, we first need to introduce the notion of 
predecessor and successor processes. For a given process p, we denote its predecessor processes by •p and 
its successor processes by p• (definition 2). For instance, in Fig. 1, the process of D1 (denoted by p1) in 

the Supplier tier has no incoming product flow, thus •p1={∅}, and one outgoing flow to the process 
denoted by p2, thus p1•={p2}. 

Definition 2 (predecessors, successors). For p∈P, •p={m|(m, p)∈F} denotes the set of predecessors 

of p, with m∈P, and p•={m|(p, m)∈F} denotes the set of successors of p, with m∈P. 
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Then we are able to define the constraints for the origin tier (C4) and the consumption tier (C5). 

ID Description Formal definition 

C4 The left most tier t contains at least one 
process p with no incoming product flow f. 

For t∈T with N(t)=|T| there exists at least one p∈P with 
PT(p)=t ∧ |•p|=0. 

C5 The right most tier t contains at least one 
process p of Source or Deliver with no 
outgoing product flow f. 

For t∈T with N(t)=1 there exists at least one p∈P with 
PT(p)=1 ∧ PC(p)∈{ S1, S2, S3, D1, D2, D3, D4} ∧ |•p|=0. 

The existence of origin and consumption tiers implies that another tier, which comprises the focal 
firm, lies between these tiers. The definition by Mentzer et al. makes this implication explicit by defining 
supply chain “as a set of three or more entities ... directly involved in the upstream and downstream 
flows” [25]. Therefore, the number of tiers, as well as the actors is at least three. Thus, C6 and C7 are the 
cardinality constraints on the tiers and actors. 

ID Description Formal definition 

C6 Each thread diagram TD consists of at 
least three tiers (t). 

For any TD: |T|≥3. 

C7 Each thread diagram TD consists of at 
least three actors (a). 

For any TD: |A|≥3. 

With respect to Supply chain business processes, the framework in [20] provides taxonomies of 
processes and process links. Both taxonomies are, however, more detailed and broader than SCOR. In 
particular, they consider also information flows. The SCOR categories of Source, Make, and Deliver map 
to those of procurement, manufacturing flow management, and demand management. Product specificity 
is not found in the framework. 

The set of nine SCM components spans a wide range of managerial variables by which activities 
across the supply chain are integrated. They address physical/technical, as well as behavioral variables. 
Due to the framework’s abstract nature, we can only deduce that supply chain design is one SCM 
component (under the term “product flow facility structure”, which determines the “network structure for 
sourcing, manufacturing, and distributing across the supply chain” [20]). 

Referring to the main elements of the SCOR technique as provided in definition 1a (section 2.2), we 
found corresponding descriptive constructs in these frameworks, which also define the terminology of 
SCM. We mapped the framework’s constructs to SCOR and enriched the definition to some extent. To 
further underpin SCOR, we need to study SCM and its antecedents for constructs and findings about 
processes, product flows, and their interdependencies along the supply chain. 

4.3 Processes 

SCM research yields a variety of process classifications, which differ in the level of detail and coverage 
(i.e., flow of product, information, and resources). For instance, there are seven classifications provided in 
[29], eight in [20], and ten in [25]. When breaking these classifications down to the activities that directly 
modify the product with regard to its structure, location, or market, the resulting activities can be grouped 
into three basic activities of any firm: (1) buying resources from other firms, (2) combining and 
converting these resources into products, and (3) selling these products to customers. These activities are 
also constituent to the SCOR technique under the terminology source, make, and deliver, respectively. 
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They correspond to the decision areas that represent the operations management origin of SCM [6, 8]. 

Product specificity is the second determinant of SCOR processes. The rationale is that stocked, 
make-to-order, and engineer-to-order products each require different operational strategies [13]. This 
determinant can be traced back to manufacturing management, which uses these types of product 
specificity to describe when a particular product is linked to a particular customer order: 

− Make-to-stock (stocked product): a particular product is not linked to a specific customer order, but 
the order can be fulfilled by any product instance from stock. 

− Make-to-order: a particular product is linked to a specific order at the time of order. 

− Engineer-to-order, design-to-order: a particular product is linked to a specific order at the time the 
collaborative engineering starts. 

Operations management has emphasized that dedicated methods are required for these product 
specificities [16, 18]. Moreover, specificity is an important determinant for deciding about the decoupling 
point, i.e., the tier, where the linkage between a particular product and the order is established [28]. 

The dependencies between product specificity and supply chain tier must be considered in using the 
SCOR technique. Prior to adding further constraints, we must define the two determinants of the 
processes – activity type and product specificity – formally. We add these classifications by defining the 
SCOR technique in definition 3 and using SCOR’s terminology (management process for activity type). 
This definition contains three sets for process categories, management processes, and product specificities 
and two functions that map process categories to management processes and product specificities. 

Definition 3 (SCOR thread diagram technique). The SCOR thread diagram technique is a tuple 
TDT=(C, M, CM, S, CS), where: 

− C is the set of process categories c∈C, with C={S1, S2, S3, M1, M2, M3, D1, D2, D3, D4}, 

− M is the set of management processes m∈M, with M={Source, Make, Deliver}, 

− CM is a function which maps each process category c∈C onto a management process m∈M, with 
CM={S1�Source, S2�Source, S3�Source, M1�Make, M2�Make, M3�Make, D1�Deliver, 

D2�Deliver, D3�Deliver, D4�Deliver}, 

− S is the set of product specificities s∈S, with S={Stock, Order, Engineer, Retail}, 

− CS is a function which maps each process category c∈C onto a product specificity s∈S, with 
CS={S1�Stock, S2�Order, S3�Engineer, M1�Stock, M2�Order, M3�Engineer, D1�Stock, 
D2�Order, D3�Engineer, D4�Retail}. 

4.4 Product Flows 

Product flows are of paramount importance to supply chain design, since they implement the linkages 
between actors and their processes. In this section, we clarify the semantics of product flow, which is 
regarded as a critical shortcoming of the SCOR technique. We define the semantics by asserting 

constraints on the product flow relation, i.e., on F⊆P×P. 

4.4.1 Product Flows Within Actors 
The rationale for product flows is that each flow must indicate that the preceding process has added value 
to the product, i.e., each process adds value to the product up to the process of consumption by the final 
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customer. SCM is also concerned with the value-adding activities that take place within an actor. Thus, 
the actor is not perceived as a “black box” of input/output relations, but regarded as a set of value-adding 
activities. For this reason, the SCM frameworks contain classifications of such activities [20, 25]. 

In SCOR, the three management processes of Deliver, Make, and Source span a set of nine potential 
product flows as shown in Fig. 2. However, only the downstream flows indicate added value; these flows 
are Source to Deliver, Source to Make, and Make to Deliver. In addition, manufacturing is often a 
complex activity that adds value in several steps. Therefore, processes of Make can be connected with 
other Make processes. The literature denotes these systems as multi-stage manufacturing systems [21]. 

D S

D M

D D

M S

M M

M D

S S

S M

S D

 

Fig. 2. Possible product flows inside an actor by management process. 

Next, we formulate the constraint C8 for capturing the possible product flows inside an actor. 

ID Description Formal definition 

C8 Each flow inside an actor is between one 
of the following management processes: 
Source to Deliver, Source to Make, Make 
to Make, or Make to Deliver. 

For each f=(pi , pj) with PA(pi )=PA(pj ): 

  (CM(PC(pi))={Source} ∧ CM(PC(pj))={Deliver}) ∨ 

  (CM(PC(pi))={Source} ∧ CM(PC(pj))={Make}) ∨ 

  (CM(PC(pi))={Make} ∧ CM(PC(pj))={Make}) ∨ 

  (CM(PC(pi))={Make} ∧ CM(PC(pj))={Deliver}) 

We define the product flow as f=(pi , pj). First, we require that the two processes pi and pj belong to 
the same actor, i.e., by referring to the function PA. Second, we enumerate the four allowed combinations 
by using the function PC to each process (which yields the process category, e.g., D1) and applying the 
function CM (which yields the respective management process, e.g., Deliver). 

4.4.2 Product flows between actors 
These flows materialize through the transfer of a product from the supplier’s Deliver process to the 
buyer’s Source process. The analysis of the dyadic buyer-supplier relationship is an important antecedent 
of SCM [2]. We must restrict product flows between actors to buyer-supplier relationships that add value 
downstream in the supply chain. Fig. 3 illustrates that these flows take place at the interface of two tiers 
(example on the left hand), but not inside the same tier (example on the right hand). 
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Fig. 3. Possible (left) and forbidden (right) product flows between actors. 

In constraint C9, we consider a product flow f=(pi, pj), which takes place between two different 
actors (we use the function PA to separate the actors). First, the actors must not only be different, but the 
actor of process pi must be the supplier of the actor of process pj; hence the tier number of pi must be 
greater than that of pj. Finally, we state the buyer-supplier relationship by using the functions CM and PC. 

ID Description Formal definition 

C9 Each flow between two actors connects a 
Deliver process with a Source process 
and the preceding actor’s tier is left from 
the succeeding actor’s tier. 

For each f=(pi , pj) with PA(pi )≠PA(pj ): 

  N(PT(pi ))>N(PT(pj )) ∧ 

  CM(PC(pi))={Deliver} ∧ CM(PC(pj))={Source} 

 

4.4.3 Dependence on Product Specificity 
The specificity of a given product does not change along the supply chain. The reason is that specificity is 
defined (as described in section 4.3) by the time the respective product is linked to a particular customer 
order. Once a product is linked to an order, the linkage cannot be broken by downstream processes [28], 
unless the product is transformed through manufacturing into another product. 

First, we look at product flows between two actors as restricted by constraint C9. The source process 
in the downstream tier is the activity of buying the product from the upstream tier, thus the specificity of 
both processes must be the same (e.g., buying a make-to-order product is only possible from the deliver 
process of make-to-order) except for retail products and its respective D4 process. We retrieve the 
specificity of both linked processes by using the function CS and define constraint C10. 

ID Description Formal definition 

C10 Each flow into a Source process of S2 or 
S3 starts at a preceding actor’s Deliver 
process of the same product specificity. 

For each f=(pi , pj) with PA(pi )≠PA(pj) 

   ∧ (PC(pj)={S2} ∨ PC(pj)={S3}):  

      N(PT(pi))>N(PT(pj)) ∧ CM(PC(pj))={Source}  
      ∧ CS(CM(PC(pi)))=CS(CM(PC(pj))) 

It is worth noting that D4 was added to the SCOR technique as a variant of D1 (available since 
version 6.0). Retail products can be retrieved from either S1 or S2 processes and will then be sold at a 
retail store, which maintains the D4 process. We include this case into a specific constraint (C11). 

Second, we analyze product flows within actors. Flows within actors describe the value-adding 
activities, which can be more complex in terms of number of processes and flows. In particular, we must 
pay attention to all four cases mentioned in section 4.4.1 and their interplay. 
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ID Description Formal definition 

C11 Each flow into a Source process of S1 
starts at a preceding actor’s Deliver process 
of specificity Stock or Retail. 

For each f=(pi , pj) with PA(pi )≠PA(pj) ∧ PC(pj)={S1}: 

     N(PT(pi))>N(PT(pj)) ∧ CM(PC(pi))={Source}  
     ∧ CS(CM(PC(pi)))∈{ Stock, Retail}  

Let us consider the example shown in Fig. 4, which shows that the actor sells two products. The 
stocked product is bought via a S1 process and then sold via a corresponding D1 process. The make-to-
order product results from two subsequent M2 processes, with the first transforming a make-to-order 
product into an intermediate product, and the second process, combining it with another stocked product 
into the final product. What we are missing so far is the semantics of the Make processes: Manufacturing 
transforms productive inputs into products of higher value, thus every Make process transforms the 
product. On the contrary, Source does not transform the product, but transfers the product to the next 
process of either Make or Deliver. Similarly, Deliver transfers the product to another tier. 

S3

S1 D1

S1

D2

D1

S2 M2 M2

 

Fig. 4. Example of possible and forbidden product flows within an actor. 

The issue of product transformation vs. transfer is closely related to product specificity. We 
summarize this dependency by analyzing the four cases of product flows within actors. 

Source to Deliver transfers a product, which will be directly sold to the customer. The delivery 
process may link the product to a particular customer order, thus specificity can increase from S1 to D2. 
The S1 process can also transfer the product to D4. These requirements are captured by C12 and C13. 

ID Description Formal definition 

C12 Each flow from Source of S2 or S3 (pre) to 
Deliver (suc) connects to processes of the 
same specificity. 

For each f with f=(pre, suc) ∧ PC(pre)∈{ S2, S3}  

   ∧ CM(PC(suc))={Deliver}:  

       CS(CM(PC(pre)))=CS(CM(PC(suc))) 

C13 Each flow from Source of S1 (pre) to 
Deliver (suc) connects to processes of 
specificity Stock, Order, or Retail. 

For each f with f=(pre, suc) ∧ PC(pre)={S1}  

   ∧ CM(PC(suc))={Deliver}:  

       CS(CM(PC(suc)))∈{ Stock, Order, Retail} 

Source to Make transfers a product that will be transformed into another product. The specificity 
may increase along the supply chain, but not decrease (C14). In the example in Fig. 4, it is forbidden to 
link the S3 process with the M2 process, because the manufacturing relies on a product specification, but 
this specification would not be available due to the engineer-to-order product of S3. 

Make to Make is the product transfer in multi-stage manufacturing. Again, specificity may increase 
in succeeding stages, but not decrease (C15). 
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Make to Deliver is the transfer to the last process within the actor. The product flow must respect the 
correspondence of specificities (C16). 

ID Description Formal definition 

C14 Each flow from Source (pre) to Make (suc) 
connects processes of the same or higher 
specificity. 

For each f with f=(pre, suc) 

    ∧ CM(PC(pre))={Source} ∧ CM(PC(suc))={Make}: 

         (CS(CM(PC(pre)))={Stock}  

          ∧ CS(CM(PC(suc)))∈{ Stock, Order, Engineer})  ∨ 

         (CS(CM(PC(pre)))={Order}  

          ∧ CS(CM(PC(suc)))∈{ Order, Engineer}) ∨ 

         (CS(CM(PC(pre)))={Engineer}  

          ∧ CS(CM(PC(suc)))={Engineer})  

C15 Each flow from Make (pre) to Make (suc) 
connects processes of the same or higher 
specificity. 

For each f with f=(pre, suc) 

    ∧ CM(PC(pre))={Make} ∧ CM(PC(suc))={Make}: 

         (CS(CM(PC(pre)))={Stock}  

          ∧ CS(CM(PC(suc)))∈{ Stock, Order, Engineer}) ∨ 

         (CS(CM(PC(pre)))={Order}  

          ∧ CS(CM(PC(suc)))∈{ Order, Engineer}) ∨ 

         (CS(CM(PC(pre)))={Engineer}  

          ∧ CS(CM(PC(suc)))={Engineer})  

C16 Each flow from Make (pre) to Deliver (suc) 
connects processes of the same specificity. 

For each f with f=(pre, suc) 

    ∧ CM(PC(pre))={Make} ∧ CM(PC(suc))={Deliver}:  

              CS(CM(PC(pre)))=CS(CM(suc)) 

 

4.5 Correctness Properties 

In this section, we summarize the grammar deduction process by describing the usefulness of each 
constraint for verifying the correctness of SCOR thread diagrams. Each constraint represents a particular 
correctness property. Table 1 shows the correctness properties for the constraints C1 through C16. 
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Table 1. Correctness properties for SCOR thread diagrams. 

ID Correctness Property Usefulness 

C1 Value-adding processes Determines processes that do not add value to the product. 

C2 Value-adding actors Determines actors that do not add value to the product. 

C3 Value-adding tiers Determines tiers that do not add value to the product. 

C4 Origin tier Determines the existence of the origin tier. 

C5 Consumption tier Determines the existence of the consumption tier. 

C6 Minimum tiers  Determines if the diagram lacks tiers. 

C7 Minimum actors Determines if the diagram lacks actors. 

C8 Correct product flows inside actors Determines false connections of processes inside an actor. 

C9 Correct product flows between actors Determines false connections of processes between actors. 

C10 Correct flows into the Source of S2 and S3 
from supplier 

Determines false usage of product specificity between 
actors for S2 and S3. 

C11 Correct flows into the Source of S1 from 
supplier 

Determines false usage of product specificity between 
actors for S1. 

C12 Correct flows from the Source of S2 and S3 
to the Deliver processes inside actors 

Determines false usage of product specificity inside actors 
for S2 and S3. 

C13 Correct flows from the Source of S1 to the 
Deliver processes inside actors 

Determines false usage of product specificity inside actors 
for S1. 

C14 Correct flows from Source to Make 
processes 

Determines false usage of product specificity inside actors 
for Source to Make processes. 

C15 Correct flows from the Make to Make 
processes 

Determines false usage of product specificity inside actors 
for Make to Make processes. 

C16 Correct flows from Make to Deliver 
processes 

Determines false usage of product specificity inside actors 
for Make to Deliver processes. 

If a particular constraint is violated by a given diagram, then we are able to (1) identify the incorrect 
elements of the model and (2) interpret the reported problem by referring to the informal description of 
the respective constraint. For instance, constraint C9 requires that each flow between two actors connects 
the Deliver and the Source processes where the preceding actor belongs to the tier on the left of the 
succeeding actor’s tier. If this constraint is breached, we characterize the problem as a false connection of 
processes between actors. The usefulness of the constraint is that it helps determine such problems. 

5 Evaluation 

From the perspective of the design science paradigm [17], the artifact that has been developed in this 
research is the SCOR grammar. The objective of this evaluation is to demonstrate the usefulness of this 
artifact for assessing the correctness of existing SCOR thread diagrams. 

5.1 Evaluation Procedure  

We obtained models from the SCOR website (http://supply-chain.org/filemanager/active), which provides 
both case studies and training material described in either reports or slides. We selected the models based 
on size (minimum of 10 processes to exclude “toy” models). The selection was documented and the 
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models were stored in their original format. The evaluation set contained 8 models. Table 2 shows the 
characteristics of these models. 

Table 2. Basic characteristics of the sample. 

ID Source Industry Year |T| |A| |P| |F| 

TD1 Cheng et al. Construction 2009 5 6 13 11 

TD2 GE Jet engines 2006 5 5 13 11 

TD3 KLATencor Service parts 2006 4 5 12 12 

TD4 Schenker Logistics 2006 5 7 18 17 

TD5 Marine Corps Military deployment 2006 3 7 28 27 

TD6 Nortel Telecommunication 1997 4 6 15 14 

TD7 SCOR Primer 1997 5 6 11 9 

TD8 SCOR Configuration  1997 4 7 20 20 

MIN: 3 5 11 9 

MAX: 5 7 28 27 

MEAN: 4.38 6.13 16.25 15.13 

For representing the selected models in a prototype system, we chose a Description Logic-based 
approach [5]. Description logic (DL) is a family of formalisms for representing knowledge within a 
domain and is well-suited for reasoning about this knowledge. These formalisms have been adopted 
successfully for model verification in a number of related areas [3, 31]. For specifying the SCOR 
grammar, we employ the Web Ontology Language (OWL 1.0) [38] and its complementing Semantic Web 

Rule Language (SWRL) [39]. The latter is used for determining the correct and incorrect model elements 
(instances of the ontology) and adding them to specific classes for each constraint C1 through C16. 

Each model was manually mapped to the ontology and the assertions stored in an OWL knowledge 
base using the Protégé 3.5 editor and framework. Protégé provides full support for both OWL and 
SWRL, and has become a reference tool for developing ontology-based applications. The mapping 
procedure was required because the original models are not machine-readable (due to the absence of a 
data exchange format). Each model was analyzed for correctness by using the built-in reasoner in Protégé 
and checking for each constraint separately. The reasoner populated the specific classes with the correct 
and incorrect instances. 

5.2 Results 

The model verification found that seven out of the eight models in the sample contained errors, i.e., 
violated one or more constraints. Collecting this data required performing the verification for each model 
separately and then handing the results over to a data analysis tool. The current prototype system is not 
designed for presenting the verification results directly in the graphical model. Fig. 5 presents a 
visualization of the verification results for model TD2 by highlighting the erroneous processes and 
product flows, and identifying the constraints that have been violated (shown in square brackets). 
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Fig. 5. Model verification results for model TD2 (four errors identified). 

We observed several cases in which the designer apparently used a customized version of the SCOR 
technique. While most of these changes are extensions that introduced new constructs, the model TD3 
contains modifications of the original constructs. Let us consider the model TD3 shown in Fig. 6. 

First, the diagram arranges tiers vertically and uses a specific symbol for vertical processes between 
actors of the same tier. This modification, however, does not add information to the underlying formal 
representation, but changes the visual presentation. Whether this presentation is more intuitive or better 
suited for communicating supply chain design, remains to be assessed. The second modification 
introduces compositions of D1 and D4 processes denoted by D1/4. Again, this modification can be 
mapped to the formal model without losing information. Specifically, each composite process can be 
replaced by two elementary processes (e.g., D1 and D4), which must then be connected to the respective 
preceding and succeeding processes of the composite process. 
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Fig. 6. Customized SCOR technique used in model TD3. 

We summarize the verification results in Table 3. The table shows for each model (TD1 through 
TD8) and constraint (C1 through C16) the findings as follows: ‘Ok’ indicates that the constraint is 
fulfilled and ‘Error/x’ indicates that x number of model elements breach the respective constraint. For 
instance, ‘Error/1’ for C1 means that one process is not linked to any other process. If the model contains 
no element relevant to the constraint, then the constraint is not applicable and we indicate this case in the 
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table by a hyphen. For instance, C15 is concerned with links between Make processes; however, no model 
in the sample contained any link between such processes. 

We calculate two metrics for each model. The process error rate (PER) represents the relative 
number of erroneous processes compared to the total number of processes in the model. This metric is 
affected by constraint C1, which is the only constraint dealing with processes. For instance, TD1 contains 
one such process out of 13 processes, hence the PER is 7.7%. Similarly, the flow error rate (FER) 
measures the proportion of erroneous product flows and is dependent on C8 through C16. In addition, we 
define the constraint error rate (CER), which signifies the relative number of error-prone models 
compared to all models for which the constraint is meaningful. For instance, C12 was breached by two 
out of four models that contain relevant product flows and thus CER is 50.0%. 

Table 3. Results of model verification. 

 TD1 TD2 TD3 TD4 TD5 TD6 TD7 TD8 CER 

C1 Error/1 Error/1 Ok Ok Ok Ok Error/1 Ok 37.5% 

C2 Ok Ok Ok Ok Ok Ok Ok Ok 0.0% 

C3 Ok Ok Ok Ok Ok Ok Ok Ok 0.0% 

C4 Ok Ok Ok Ok Ok Ok Ok Ok 0.0% 

C5 Ok Ok Ok Ok Ok Ok Ok Ok 0.0% 

C6 Ok Ok Ok Ok Ok Ok Ok Ok 0.0% 

C7 Ok Ok Ok Ok Ok Ok Ok Ok 0.0% 

C8 Ok Ok Ok Ok Error/1 Ok Ok Error/2 25.0% 

C9 Ok Ok Error/1 Ok Ok Ok Ok Ok 12.5% 

C10 Ok - - Ok Error/2 Error/1 - - 50.0% 

C11 Ok Error/2 Error/1 - Error/2 Ok Error/2 Error/1 71.4% 

C12 Error/1 Ok - Ok - Error/1 - - 50.0% 

C13 - Ok Ok - - - Ok - 0.0% 

C14 Ok Ok Ok Ok Ok Ok Ok Ok 0.0% 

C15 - - - - - - - - - 

C16 Ok Error/1 Ok Ok Ok Ok Ok Error/4 25.0% 

PER 7.7% 7.7% 0.0% 0.0% 0.0% 0.0% 9.1% 0.0% 

FER 9.1% 27.3% 16.7% 0.0% 18.5% 14.3% 22.2% 35.0% 

 

 

For further analysis, we divide the sixteen constraints into three larger groups as follows. C1 through 
C7 enforce the correct usage of the main constructs of process, tier, actor, and product flow, without 
specifically considering their interrelation. C8 and C9 check the correct usage of the construct of 
management process, thus Source, Make, and Deliver. Finally, C10 through C16 assess the correct usage 
of the construct of product specificity. We aggregate the verification results accordingly in Table 4. 
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Table 4. Results of model verification per constraint group. 

Constraint Group TD1 TD2 TD3 TD4 TD5 TD6 TD7 TD8 CER 

Usage of the constructs of 
process, tier, actor, and 
product flow 

Error Error Ok Ok Ok Ok Error Ok 37.5% 

Usage of the construct of 
management process 

Ok Ok Error Ok Error Ok Ok Error 37.5% 

Usage of the construct of 
product specificity 

Error Error Error Ok Error Error Error Error 87.5% 

 

5.3 Discussion 

The results presented in Table 3 and Table 4 lead to a number of observations. First, we found errors in all 
but one model. However, the error-free model TD4 stems from the transport logistics in which all 
processes are of make-to-order specificity and no manufacturing takes place. TD4 thus contains only S2 
and D2 processes, which describe a product flow with no branches. This could limit the appearance of 
syntactic errors. On the other hand, each error-prone model violates two or three constraints. 

Second, as shown in Table 3, the highest CER is reported for C11 (71.4%), C10, and C12 (both at 
50.0%). All three constraints relate to the usage of product specificity as a determinant of linked processes 
from Source to Deliver or Deliver to Source. In general, product specificity appears to be the most 
ambiguous construct of SCOR, since Table 4 reveals that its aggregated CER is as high as 87.5%. In the 
other two constraint groups, errors are found in three out of the eight models. The management process 
construct was used falsely as well: Two models contain a sequence of Make-Deliver-Make as shown in 
Fig. 7, whereas only Make-Make would be correct. One model arranged two actors that exchange 
products within the same tier instead of separating them into two different tiers (TD3, shown in Fig. 6). 

When interpreting the results, in particular the relatively high error rates, we must be aware of the 
sample size. Since our sample is too small for further statistical analysis, it did not allow us to provide 
evidence in terms of factors that affect the error rate of a particular model. However, we believe that our 
initial findings suggest some ambiguity in the existing body of knowledge that is available to supply chain 
designers. This knowledge ranges from the SCOR documentation and supplementing training material to 
other references and software tools. We also found errors in the two models that originated directly from 
the SCOR organization, which were presented at the SCOR Fall Conference 1997 (TD7, TD8). 

The proposed methodology and the prototype successfully detect errors in SCOR models. These 
errors must be corrected by the supply chain designer. Next, we illustrate how our approach can assist the 
designer in correcting incorrect models. We have to consider that often several alternatives exist for fixing 
the errors, from which the designer has to choose the alternative that matches the desired structure. For 
instance, the model in Fig. 5 shows for the OEM tier an invalid link between the D2 process and the S1 
process of the Warehouse tier. There exist at least two alternatives for the designer, i.e., either modifying 
D2 to D1 or modifying S1 to S2. We can automatically generate these alternatives and present them to the 
designer by deriving a rule from the formal definition of C11 as follows: For each flow f=(pi, pj) in error 

class C11, modify the model as follows: CS(CM(PC(pi))):={Stock} ∨ CS(CM(PC(pj))):={Retail}. 
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Fig. 7. Incorrect use of the management process construct in model TD5 (left) and TD8 (right). 

In this way, we are able to construct rules for every constraint (by enumerating the alternatives that 
are offered by the constraint) and present the alternatives to the designer to choose from. A practical 
limitation of this repair approach is that fixing a particular error may cause subsequent errors. For 
instance, if the designer changes the S1 process of the Warehouse tier (Fig. 5) into S2, the link to its 
succeeding D1 process becomes invalid (violation of constraint C12). These cascading errors could 
propagate both upstream and downstream the supply chain and thus arriving at a correct model maybe 
somewhat cumbersome. Therefore, assisting the designer in developing correct models from the start is 
another direction to take by proactively providing suggestions for linking processes to prevent errors. 
Next, we outline how the deduced constraints can be used for assisting the designer in this task. 

We consider an upstream design in which the designer defines all the tiers, adds processes to the 
right most tier, and then places linked processes in the upstream tiers. For instance, the right most tier 
contains a single S2 process denoted by p1, with PC(p1)={S2} and N(PT(p1))=1. Two other tiers exist. 
The question is what kind of processes p2 may link to p1 by the flow f1=(p2, p1)? We can generate all 
valid answers by analyzing those constraints that are concerned with flows into S2 processes: 

− Constraint C8 is not relevant, because it only relates to flows inside an actor. Constraint C9 allows 
flows into Source processes from Deliver processes of preceding tiers. Therefore, we use the 

definition of this constraint and add an axiom to the design space: (PC(p2):={D1}  ∨ PC(p2):={D2}  ∨ 

PC(p2):={D3}  ∨ PC(p2):={D4})  ∧ (N(PT(p2)):=2 ∨ N(PT(p2)):=3). 

− Constraint C10 helps us in suggesting the right product specificity of p2, i.e., specificity of p2 must be 
the same as that of p1. We add to the design space: CS(CM(PC(p2))):=CS(CM(PC(p1))). 

− Next, we can assess the design space, which consists of two axioms. Since CS(CM(PC(p1))) is given 
in the model as Order, we replace the second axiom by CS(CM(PC(p2))):={Order}. Therefore, the 

design space is further reduced to: PC(p2):={D2}  ∧ (N(PT(p2)):=2 ∨ N(PT(p2)):=3). 

Finally, the designer can select from these two suggestions by placing a D2 process as an input for 
the S2 process, in either tier left of the customer tier. In this way, we are able to generate candidate 
incoming flows for all the process categories and suggest them to the designer to choose from. We have 
illustrated the required analytical steps for the upstream design only. In case of the downstream design, 
the analysis would be quite similar, by taking from the constraint definitions those parts that are 
concerned with the succeeding process and converting them into axioms. 
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5.4 Implications 

Our research has implications for both the users and developers of SCOR. Users should carefully revisit 
the existing SCOR documentation and base their supply chain design on a formal grammar instead of 
being inspired by only the brief descriptions and example models. Otherwise, they are in danger of 
developing models that may contain subjective interpretations of the technique and thus cannot be 
exchanged, formally analyzed, and shared with supply chain stakeholders. This risk would also hamper 
benefiting from the two posited advantages of reference models for supply chain design. The evaluation 
results suggest that the product specificity construct leads to a number of design alternatives that must be 
carefully evaluated by the user to select a correct design. At least, its original definition lacks clarity to 
enable its correct usage. However, the SCM literature provides sufficient underpinning, as discussed in 
section 4.4.3, for clarifying the syntax and semantics of processes and product flows under consideration 
with respect to product specificity. 

Whereas the proposed methodology successfully detects incorrect models, our research also has 
implications for the use of validated models and the development of decision support systems (DSS) 
within SCM. These implications concern the third use case of the SCOR technique (discussed in section 
1), namely, supply chain evaluation. The DSS must assist the designer in creating alternative designs and 
assessing their performance through appropriate metrics. For this type of DSS, the proposed artifact 
provides not only the formalization for model representation and storage, but also automatic generation of 
alternative designs. The difficulty in generating alternative designs is the sheer number of alternatives that 
may result from adding, removing, and modifying each single model element (processes, flows, actors, 
and tiers). The proposed artifact could be used for answering questions such as what downstream and 
upstream alternatives exist for a particular process. For instance, the M3 process in Fig. 1 has three 
upstream processes of category S1 and S2. We can generate alternatives for either process by utilizing the 
constraint that is concerned with these processes, namely, C14. The formal definition of C14 spans the 
design space, which consists of two alternatives for each upstream process (S2 and S3 for the S1 process, 
and S1 and S3 for the S2 process). In this way, the proposed constraints could be used by the DSS for 
generating alternative designs and presenting them to the designer. Similarly, while correcting invalid 
models, each alternative for a particular process may result in subsequent errors, both downstream and 
upstream. In this case, the DSS could apply the “repair” methodology as described in the preceding 
section to avoid cascading errors. 

6 Conclusion and Future Work 

This research presents a supply chain grammar and analysis techniques for SCOR-based supply chain 
design. The grammar adapts SCM constructs and rules to avoid making assumptions about supply chain 
design that are not justified by the literature. 

There are three main results of this work. First, this research demonstrates that the SCM literature 
provides the rules to be able to effectively restrict the design space that is spanned by the SCOR 
technique. This research could be extended to support reverse product flows (return processes), 
information flows (plan processes) as well as other parts of the SCOR Model. However, any endeavor 
must first clarify the main constructs for primary product flows, which is the main focus of our research. 
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Second, our work represents an effort to improve the understanding of supply chain designs across 
organizational boundaries. Specifically, it highlights the need to clearly define the formal semantics of 
primary product flows in SCOR, which is missing so far. The initial evaluation suggests that the current 
adoption of the SCOR technique is negatively impacted by its informal description, which leads to error-
prone supply chain designs. 

Third, the grammar is an initial step in understanding the many factors that affect the correctness of 
models created, the perceptions of model users, and the performance of individuals who use these models 
for solving problems in a particular domain. Specifically, it is still unknown how a particular error rate is 
correlated with factors such as the design environment (e.g., grammar used, software tool support) and 
domain (e.g., industry, size and complexity of the diagram). These effects could be studied by 
incorporating the general findings from conceptual modeling research [40]. 

Our future work will use the deduced supply chain grammar to study the factors that affect the extent 
to which model users understand the domain semantics that is conveyed in a thread diagram. Our current 
study suggests that the original version of the SCOR grammar, which is provided in the SCOR handbook, 
causes difficulties for effectively defining mappings between real-world phenomena and their 
representations. For instance, the original grammar lacks rules that guide designers how to connect 
processes under consideration of the supply chain context. These rules were added by deduction from the 
existing SCM literature. Positing that deficiencies in the grammar exist, we plan to empirically validate in 
a laboratory experiment, the effects of such deficiencies on the user’s problem solving performance when 
using models generated from the grammar. 
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