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Abstract. Machine learning (ML) has become an important technology for the development of 
prediction models for crop yield. Predictive modeling using ML is rapidly growing as research 
addresses early predictions versus predictions shortly before harvest, predictions at the scale of 
field or region, and predictions for different types of crops. This great diversity of prediction 
tasks requires a proper choice of specific ML techniques to attain high levels of performance. 
Therefore, this review focuses on a distinct prediction task and aims to provide task-specific 
insights into the adoption of ML. The objective of our research is to investigate ML approaches 
for the early prediction of grain yield at the field scale. We identified studies published between 
2014 and 2021 through a systematic search in Scopus and Web of Science for journal articles 
and a retrieval of analogous articles from three previous reviews. The study selection process 
included screening, full-text assessment, and data extraction by two independent coders. Of 924 
unique records identified in the search and retrieval, 157 full texts were assessed for eligibility, 
and 46 studies met all inclusion criteria. The results paint a comprehensive picture of the ML 
techniques used, revealing the richness of data collection, preprocessing, model training, and 
model evaluation. Specifically, the results highlight (1) a wide range of prediction horizons 
from a few weeks up to more than eight months before harvest; (2) a large set of input data 
representing weather, crop management, site characteristics, and vegetation properties; (3) a 
low level of adoption of feature selection methods to enhance performance; (4) some lack of 
information on the size of the training and test sets required to assess their suitability; and (5) 
heterogeneity in the reporting of performance metrics that hinders the comparison and 
integration of evidence from individual studies. To overcome barriers to the accumulation of 
evidence, we suggest recommendations for enhanced reporting and building greater consensus 
regarding the most appropriate performance metrics. 
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1. Introduction 

Yield prediction has an important role in crop farming aimed at efficient and sustainable production. 

Accurate and timely predictions are important for farmers’ decision making regarding planting, 

irrigation, fertilization, harvesting, and trading. For the development of prediction models, machine 

learning (ML) has become a key technology. The principal idea of ML is to learn a prediction model 

from past data, evaluate the model based on new observations, and ultimately deploy the model in 

a productive environment (Jordan and Mitchell, 2015). The number of applications of ML 

technology for crop yield prediction have increased rapidly in the past few years. This growth has 

been amplified by freely available ML algorithms, improved remote sensing techniques, and the 

enhanced provision of smart farming data that represents genotypes, soil, weather, crop 

management, and other environmental parameters that affect crop growth (Wolfert et al., 2017).  

The field of ML-based yield prediction has made great strides in enhancing the accuracy 

and robustness of prediction models. Evidence for the effectiveness of ML-based yield prediction 

can be categorized along at least three dimensions: (1) prediction horizon, ranging from a few hours 

to many months before harvest; (2) scale, such as field and region; and (3) type of crops, including 

grains and fruits in orchards. These dimensions span a large array of prediction tasks. At the same 

time, a great variety of ML techniques are available to researchers and practitioners who want to 

develop a prediction model. Developers must consider alternative techniques in each phase of 

development, such as the preprocessing of raw data into features, training from past time-series 

data, and the evaluation of performance on new data. The choices of these techniques have pivotal 

impacts on the usefulness of the prediction model. Therefore, gaining insights into ML techniques 

is essential for the understanding of the best practices through which high levels of performance 

can be attained. 

With respect to the prediction horizon, research has demonstrated that predictions are 

feasible at all vegetation stages. For instance, some studies compared models for pre-sowing, mid-

season and late-season predictions of grain yield and found better performance during the later 

stages (Fieuzal et al., 2020; Filippi et al., 2019). Similarly, a literature review by Muruganantham 

et al. (2022) noted that the relationship between vegetation indices obtained from images and crop 

yield is not static but varies by vegetation stage. Consistent with this conclusion, a review of 69 

studies by Benos et al. (2021) highlighted a handful of articles that examined predictions at a 

specific vegetation stage or time before harvest. Notwithstanding these indications for the 

importance of the prediction horizon, many studies focused on predictions right before harvest. 

However, the results of studies on early prediction cannot necessarily be compared with the results 

of studies on predictions right before harvest when much more within-season data is available. The 

conceptual and empirical differences of early prediction warrant the further assessment of the 

evidence from previous studies. 

Scale is an important dimension of prediction models because models at each scale serve a 

different purpose. While plant-scale models are aimed to better understand the factors affecting 

crop growth (Shekoofa et al., 2014), field-scale models can directly assist in crop management 
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(Basso and Liu, 2019) and models at larger scales primarily inform policy making in agriculture 

(López-Lozano et al., 2015). Depending on the scale, models often largely differ in the scope, 

amount and granularity of the agricultural input data used, which then impacts the adoption of ML 

techniques. A variety of scales has been identified in previous systematic reviews (van 

Klompenburg et al., 2020). Specifically, a recent review of 44 studies found that most models 

predicted crop yield at the regional scale rather than the field scale (Oikonomidis et al., 2022). The 

review also accentuated the higher effort required for collecting field-level yield data (e.g., in-field 

sampling) compared with accessing readily available yield data from governmental bodies and 

regional associations. Although prediction models at the regional scale can exhibit good accuracy, 

their usefulness to inform the decision making of individual farmers might be severely limited. 

Taken together, these results suggest that increased attention should be given to different scales 

when assessing the role of specific ML techniques for achieving high levels of prediction 

performance. 

A third concern in the literature is the development of prediction models that are specific to 

one crop or type of crop. Although the digital technologies available for remote sensing, image 

processing, model training and evaluation are independent from the surveyed crop, the vast majority 

of studies have only focused on one crop. The rationale is that differences in crop phenology and 

cultivation patterns affect the spatial and temporal variability of input data for training a prediction 

model. These differences concern major types of crops, such as grains, fruit crops, and root 

vegetables. For this reason, crop-specific reviews have been undertaken for fruits in orchards (He 

et al., 2022), vineyards (Barriguinha et al., 2021), palm oil plantations (Rashid et al., 2021), and 

pasture crops (Morais et al., 2021). Further reviews considered a wider range of crops but identified 

the specific studied crops (Benos et al., 2021; Oikonomidis et al., 2022; van Klompenburg et al., 

2020).  

Previous reviews of the literature have made important contributions to understanding the 

adoption of agricultural input data, general ML algorithms, and performance metrics for a large 

array of prediction tasks (Bali and Singla, 2022; Benos et al., 2021; van Klompenburg et al., 2020). 

In light of the three dimensions of yield prediction discussed above, providing further insights is 

possible by focusing on a specific prediction task. Against this backdrop, our research investigates 

ML technology for the early prediction of grain yield at the field scale. The focus on the early 

prediction is guided by the hypothesis that prediction performance is negatively correlated with 

prediction horizon; hence, we intend to validate this hypothesis through our review. By focusing on 

the field scale, we expect to gain task-specific insights into the adoption of ML techniques. We 

chose grain as the type of crop under study to further reduce variability in the prediction models. 

This approach facilitates the collation and synthesis of quantitative results from otherwise 

heterogeneous studies. Specifically, the objective of our research is to assess the adoption of ML 

technology for the early prediction of grain yield at the field scale by conducting a systematic review 

of published studies. 
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2. Method 

This systematic review was conducted in accordance with guidelines defined in the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement where applicable 

(Moher et al., 2009). In this section, we discuss the criteria for the inclusion of studies, the 

information sources that were searched, and the processes for study selection, data extraction, and 

quantitative data synthesis. To minimize error and bias, two authors coded the data and worked 

independently in all stages of the review (from study identification to data extraction). 

2.1. Eligibility criteria 

Studies were eligible for inclusion if they applied machine learning technology to predict grain 

yield at the field scale using real-world data such that there was a meaningful offset between the 

last recording of input data and harvest (so-called early prediction). We excluded studies for the 

following reasons: (1) yield prediction not related to grain but a different type of crop (e.g., fruits) 

or object (e.g., photovoltaic plant), (2) prediction of a non-continuous variable (e.g., growth stage), 

(3) prediction at a different scale (e.g., region), (4) prediction right before harvest (no offset), (5) 

no test of a prediction model but conceptual research or literature review, (6) no application of ML 

technology, and (7) and no real data set but synthetic data. With respect to bibliographic 

characteristics, we defined the following eligibility criteria: article published in a journal, written 

in English, and original contribution. 

2.2. Information sources and search 

The identification of articles relied upon a systematic search of journal articles published between 

2014 and 2021. We carried out the search using the electronic databases Scopus (January 2022) and 

Web of Science (November 2022), which have comprehensive coverage of peer-reviewed articles. 

The automated bibliographic search was complemented with analogous articles included in three 

previous systematic reviews of ML-based yield prediction (Bali and Singla, 2022; Benos et al., 

2021; van Klompenburg et al., 2020). 

The bibliographic search was performed on each article’s title, abstract, and keywords by 

combining search terms for crop yield prediction and ML. The prediction task was represented as 

("crop predict*" OR "crop forecast*" OR "crop estimat*" OR "yield predict*" OR "yield estimat*" 

OR "yield forecast*") to account for different terminology in the literature. The coding of ML both 

covered abstract terms and concrete ML algorithms by representing ML as ("machine learning" OR 

"deep learning" OR "artificial intelligence" OR "support vector" OR "random forest*" OR "neural 

network*" OR ANN OR SVM). To prevent the oversight of articles that provide no specification 

of the grain and scale of prediction in their title, abstract, or keywords, we included neither grain 

nor field scale in the search query.  
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2.3. Study selection 

After the removal of duplicate records, two authors independently carried out the screeningwith a 

codebook describing the eligibility and exclusion criteria. All codes were compared, and 

disagreements were resolved by discussion. For the articles that passed the screening phase, one 

author downloaded the full texts from the publishers. The same coders independently assessed the 

full texts using the same codebook as in the screening phase. Finally, the codes were compared, and 

any inconsistencies were resolved by discussion between the coders. The initial agreement between 

coders in the screening phase (89.4%) and eligibility assessment (82.2%) was high. 

2.4. Data collection process 

For the articles that went through the full-text assessment, the two coders independently extracted 

data using a codebook for the data items defined in Section 2.5 (data points were recorded in a 

standardized spreadsheet form). Afterwards, the coders discussed all individual codes to agree upon 

the final data points. The agreement between coders was high (93.8%). 

2.5. Data items 

The conceptual model of the review is shown in Fig. 1. This model structures the process for ML-

based grain yield prediction and indicates the major data items. 

 

Fig. 1. Machine learning process and data items for grain yield prediction. 

Prediction is used to forecast the yield of different grain crops in the future. Because the yield will 

be known at harvest, the predicted yield can eventually be compared to the observed yield. Grain 

is the crop that is cultivated and for which the prediction is made. Country describes the area where 

the study is conducted. Prediction horizon represents how far ahead the predictions are made, which 

can range from a handful of days up to many months before harvest. As shown in Fig. 1, the process 

for ML-based yield prediction is defined by sequential phases of data collection, data preprocessing, 

model training, and model evaluation, which we discuss in the following paragraphs. 

Data collection includes the acquisition of prediction-relevant data and the creation of a 

data set. Study conditions define the fields, seasons, and genotypes for which data are collected 

during crop growth. Many studies organize the field into a larger number of plots; data are collected 

for each plot and the plot-scale yield predictions are converted into field-scale predictions. Data 

attributes are the different input data that are collected for the field (or plot) under study. Attributes 
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can be categorized as follows: weather (e.g., precipitation and temperature), crop management (e.g., 

fertilization and irrigation), site (e.g., soil properties); vegetation indices obtained from 

spectroradiometers (Xue and Su, 2017), and canopy (e.g., height above the ground). Attributes of 

the two latter categories are measured using sensors that can be classified by the distance from the 

ground as follows (Mouazen et al., 2020). First, satellites observe a crop from orbit through optical 

sensors, which allow for the interpretation of reflectance with respect to vegetation stages (Zeng et 

al., 2020). Second, unmanned aerial vehicles (UAVs) carry devices, such as hyperspectral and 

multispectral cameras, and survey a field from a few meters above to provide high-resolution 

imagery (Olson and Anderson, 2021). Third, in-field measurement spans from the use of handheld 

sensors and stand assessment (visual inspection) to the destructive sampling of plants for 

subsequent laboratory analysis. 

Data preprocessing is the phase of transforming the data set into a representation from which 

a prediction model can be trained. Although preprocessing often includes many laborious subtasks, 

such as the integration of different raw formats and the handling of incomplete data, these subtasks 

can be rather easily solved (Raschka, 2015). Therefore, we focus on feature selection for defining 

the best subset of features from attributes. The specific feature selection methods can be categorized 

as follows (Chandrashekar and Sahin, 2014). Filter-based methods calculate a metric and select 

features based on that metric (e.g., correlation coefficient). Wrapper-based methods remove 

different features from a subset, evaluate the goodness of the subset, and eventually choose the 

subset with the best evaluation; example methods are backward elimination and random choice. 

Embedded methods are built-in specific ML algorithms, such as Random Forests feature selection. 

The number of features denotes the total number of features that are forwarded to the training phase. 

Model training is concerned with learning a function that best maps an input onto an output 

based on example input-output pairs. In crop yield prediction, the input includes all the selected 

features at the time of prediction, and the output is the observed yield at harvest. ML algorithm 

refers to the supervised learning algorithm used to estimate the mapping function, such as Artificial 

Neural Networks (ANN) (Bishop, 2006) and Random Forests (RF) (Ho, 1995). Regardless of the 

specific algorithm used, a sufficiently large number of examples, or pairs of inputs and observed 

yields, are required. 

Model evaluation is used to assess the performance of a trained prediction model. 

Evaluation usually relies upon the experimental manipulation of one or more factors. Manipulation 

allows for the determination of effects on performance and the discovery of experimental conditions 

that enhance performance. In evaluation, the trained model must be tested on new observations, i.e., 

data that were not used for training the model (also called unknown data). One technique is 

cross-validation, which partitions an entire data set into complementary subsets (denoted as k-

folds), conducts training on k-1 subsets, and eventually tests the prediction model on the remaining 

subset. Performance is then calculated as the mean of the results for all of the k-folds. Another 

technique tests a prediction model on a separate data set of new observations (so-called test set). 

For either technique, new observations for testing the model can be defined temporally (i.e., 

observations in a different season) or cross-sectionally (i.e., observations in the same season). The 
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prediction model is evaluated using performance metrics, which are available for comparing a set 

of predicted yields with a corresponding set of observed yields. Example metrics are the coefficient 

of determination (denoted as R2), root mean square error (RMSE), mean absolute error (MAE), and 

mean absolute percentage error (MAPE). 

2.6. Quantitative data synthesis 

We analyzed the relationship between prediction horizon and performance and focused on the R2 

metric because it is unitless and thus enabled collation of performance across studies. For each 

study that reported R2, we first checked if the prediction horizon in months was available. If this 

information was not available from the article, we contacted the corresponding author. We 

excluded a study if it used no specific prediction horizon but trained the model by pooling data 

with different timespans between the last input and harvest. If a study reported separate results for 

different horizons, we selected the models with the smallest and largest horizons. 

In an additional analysis, we took differences in growth periods into account. For instance, 

if the growth period lasts only three months, a prediction horizon of two months might be 

regarded as very early. However, this interpretation depends on the length of the growing period, 

and thus it could be different for other periods. For each prediction model, we calculated the 

prediction time relative to the growth period (defined as the time from sowing to prediction 

divided by the length of the growth period). This measure indicates how far along the growth 

period is. It ranges from 0 for prediction at sowing to 1 for prediction at harvest. Complete 

information on the extraction of prediction horizons, R2, and growth periods from the studies is 

given in the Supplement. 
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3. Results 

3.1. Study selection 

Fig. 2 presents the selection process in a PRISMA flow diagram and indicates the reasons for the 

exclusion of records and articles. We retrieved 736 records from Scopus, 751 records from Web of 

Science, and 133 records from three previous reviews. After the removal of duplicate records, a 

total of 924 records were screened based on the title, abstract, and list of keywords. Of these, 157 

articles were selected for the full-text assessment, and 46 studies met the criteria for inclusion. 

 

Fig. 2. Flow diagram of study selection. 

Table 1 provides an overview of the studies, the majority of which were published in 2021 (23) and 

2020 (12). The most frequently studied grains were wheat (22), maize (13), soybean (5), barley (4), 

rapeseed (4), and rice (4). Eleven studies were conducted in China, and nine studies were conducted 

in the United States of America. For a total of 38 studies, we were able to identify the time period 

between prediction and harvest measured in months (depending on the unit and details reported). 

Overall, the time periods ranged from more or less one month up to more than eight months. For 

five of the remaining studies, the reporting lacked sufficient details to identify the prediction 
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horizon and was limited to developmental stages of the crop (e.g., tillering, stem extension, and 

heading). No such information was available for three studies. 

Table 1. List of studies included in qualitative synthesis (N = 46). 

Study Grain Country Prediction horizon 

Adak et al. (2021) Maize USA 0.9 m 
Alebele et al. (2021) Rice China 1 to 2.5 m (*) 
Barbosa et al. (2020) Maize USA NR 
Barzin et al. (2020) Maize USA 3 to 5 m (*) 
Basir et al. (2021) Rice Bangladesh 4 m 
Castaldi et al. (2015) Wheat Italy 0 to 5 m (*) 
Chen and Jing (2017) Wheat China 1.5 m 
Choudhury et al. (2021) Wheat Australia 1.4 m 
Costa et al. (2022) Wheat USA 0.5, 0.7 m 
Danilevicz et al. (2021) Maize USA 3.3 m 
da Silva et al. (2020) Soybean Brazil 1 growth stage 
Eugenio et al. (2020) Soybean Brazil 8 m (*) 
Fajardo and Whelan (2021) Wheat Australia 3 m 
Fan et al. (2021) Rapeseed China 1.2 m (*) 
Fei et al. (2021a) Wheat China 1 growth stage 
Fei et al. (2021b) Wheat China 6 growth stages 
Feng et al. (2020) Wheat Australia 6 growth stages 
Fieuzal et al. (2017) Maize France 0.1 to 4.6 m (*) 
Fieuzal et al. (2020) Wheat France 0 to 8 m 
Filippi et al. (2019) Wheat; barley; rapeseed Australia 1.5 to 7 m (*) 
Florence et al. (2021) Wheat UK (Scotland) 1.7 to 4.7 m 
García-Martínez et al. (2020) Maize Mexico 4, 5 m 
Habyarimana and Baloch (2021) Sorghum Italy 0 to 7 m (*) 
Hassanzadeh et al. (2021) Snap bean USA 0 to 0.8 m 
Hunt et al. (2019) Wheat UK (England) 1.2 to 8.3 m (*) 
Kross et al. (2020) Maize; soybean Canada 1 to 2 m (*) 
Li et al. (2021) Wheat; maize; rice China 6 growth stages 
Meng et al. (2021) Maize USA 1 to 2 m (*) 
Nevavuori et al. (2019) Wheat; barley Finland 1, 2, 3 m (*) 
Nevavuori et al. (2020) Wheat; barley; oat Finland 1.8 to 3.1 m (*) 
Ngie and Ahmed (2018) Maize South Africa 1, 3 m (*) 
Niedbała et al. (2019a) Wheat Poland 1.4 to 3.7 m (*) 
Niedbała et al. (2019b) Rapeseed Poland 0.5 to 2.8 m (*) 
Ozcan et al. (2021) Wheat Turkey 1 m 
Ramos et al. (2020) Maize Brazil NR 
Sagan et al. (2021) Maize; soybean USA 0.8 to 1.2 m (*) 
Šestak et al. (2018) Wheat Croatia 2.2 m 
Shafiee et al. (2021) Wheat Norway 0.6 to 1.6 m (*) 
Sharifi (2021) Barley Iran 1 m 
Tian et al. (2021) Wheat China 0.7 m 
Wan et al. (2020) Rice China 0 to 3 m 
Wen et al. (2021) Rapeseed Canada 2 m (*) 
Zhang et al. (2020) Wheat China NR 
Zhang et al. (2021) Maize China 1 to 6 m (*) 
Zhou et al. (2021a) Soybean USA 1.8 m (*) 
Zhou et al. (2021b) Wheat Japan 1.0, 1.1 m 

Note. m = months. (*) = no exact dates and timespans available. 
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3.2. Data collection 

Table 2 shows the number of seasons and lists the data attributes per study. In most cases, data were 

collected in one (21) or two (9) seasons. Thirty-seven articles clearly specified whether the data had 

been collected at a research site (20) or a field operated by a farmer (17) (not tabulated). The results 

for the different categories of data attributes highlight the importance of vegetation indices (VIs) 

and management data, which were present in 38 and 25 of the data sets, respectively. Many studies 

assessed alternative or complementary VIs, with every fourth study testing at least eight different 

indices. Management attributes often included fertilizer input (14) and planting date (11), and the 

most incident weather attributes were precipitation (14) and temperature (13). Every fourth study 

collected site data, such as electroconductivity, elevation, soil moisture, and surface roughness. 

Every seventh study objectively measured canopy height in the field. 

Table 3 provides information on the fields and types of sensors used. Seventeen studies 

collected the data of a single field, whereas five studies had access to data of hundreds of fields. 

The total field size ranged from less than one hectar for some experiments at research facilities to 

3300 hectares, although most studies did not report that information. More than half of the studies 

investigated a single genotype, but a handful of studies considered hundreds of varieties. 

Satellites and UAVs were the most frequently used sensors (21 studies each). Eleven studies 

analyzed data collected via two sensor types. For instance, one each study combined vegetation 

indices derived from satellite images with UAV-based laser scans (Kross et al., 2020) and RGB 

images (Sagan et al., 2021), respectively. Frequent sources of satellite images were Sentinel-2 (6) 

and Landsat (5), and UAVs mostly carried multispectral (16) and RGB (7) cameras. As the spatial 

resolution of images depends on the specific camera and satellite used, the resolution spanned from 

1 to 10 centimeters for UAVs and 10 to 1000 meters for satellites, respectively. A broad range of 

in-field sensors was found by including the following: handheld sensors for canopy reflectance and 

vegetation indices; stand assessment by counting the number of plants (da Silva et al., 2020) and 

rating the canopy wilting (Zhou et al., 2021a); and destructive sampling for determining leaf area 

index (Fan et al., 2021) and soil roughness (Fieuzal et al., 2017). Three studies did not collect data 

via specific sensors but exclusively retrieved readily available data about weather, soil, or crop 

management. 
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Table 2. Data collection in studies (N = 46). 

Study Seasons 
Data attributes 

Weather Management Site VI Canopy 

Adak et al. (2021) 1 – PD – 12 Height 
Alebele et al. (2021) 2 – – – 6 – 
Barbosa et al. (2020) 1 – FI, SR Yes – – 
Barzin et al. (2020) 3 PR FI, PD – 26 – 
Basir et al. (2021) 1 – SR Yes – – 
Castaldi et al. (2015) 1 – – – 2 – 
Chen and Jing (2017) 1 – – – * – 
Choudhury et al. (2021) 1 – – – 3 Height 
Costa et al. (2022) 1 – PD – – – 
Danilevicz et al. (2021) 3 – FI – 8 – 
da Silva et al. (2020) 2 – SR – 12 – 
Eugenio et al. (2020) 1 – IR – 10 – 
Fajardo and Whelan (2021) 3 – – Yes – – 
Fan et al. (2021) 2 – FI – 4 – 
Fei et al. (2021a) 1 – – – 20 – 
Fei et al. (2021b) 1 TE IR – 22 – 
Feng et al. (2020) 10 PR, RA, TE, O FI, PD, IR, O Yes 1 – 
Fieuzal et al. (2017) 1 PR IR, PD, O Yes 1 – 
Fieuzal et al. (2020) 4 – – – 1 – 
Filippi et al. (2019) 3 PR PD Yes 1 – 
Florence et al. (2021) 2 – FI – 2 Height 
García-Martínez et al. (2020) 1 – FI – 6 – 
Habyarimana and Baloch (2021) 2 – – – 3 – 
Hassanzadeh et al. (2021) 2 – – – 2 – 
Hunt et al. (2019) 1 PR, TE PD Yes 5 – 
Kross et al. (2020) 3 – – Yes 3 – 
Li et al. (2021) 7 EV, PR, TE, O PD Yes 2 – 
Meng et al. (2021) 14 PR, TE FI Yes 3 – 
Nevavuori et al. (2019) 1 – – – 1 – 
Nevavuori et al. (2020) 1 TE – – * – 
Ngie and Ahmed (2018) 1 – – – 11 – 
Niedbała et al. (2019a) 8 PR, TE FI, PD, O – – – 
Niedbała et al. (2019b) 8 PR, TE FI, PD, O – – – 
Ozcan et al. (2021) 1 PR, RA, TE, O PD – 4 – 
Ramos et al. (2020) 2 – – – 33 – 
Sagan et al. (2021) 1 – FI, IR – 18 – 
Šestak et al. (2018) 1 – FI – 2 – 
Shafiee et al. (2021) 1 – – – 3 – 
Sharifi (2021) 5 PR, TE, O – – 2 – 
Tian et al. (2021) 10 PR, TE – – 3 – 
Wan et al. (2020) 2 – FI – 13 Height 
Wen et al. (2021) 4 PR, TE FI Yes 2 Height 
Zhang et al. (2020) 3 – – – 9 – 
Zhang et al. (2021) 3 PR, TE, O – Yes 6 – 
Zhou et al. (2021a) 1 – – – 3 Height 
Zhou et al. (2021b) 2 – – – 7 Height 

Count n/a 16 25 12 40 7 

Note. EV = evaporation. FI = fertilizer input. IR = irrigation. O = other. PD = planting date. PR = precipitation. 
RA = radiation. SR = seed rate or density. TE = temperature. VI = vegetation indices. 
* = reflection bands but no specific VI used. 



 

12 
 

Table 3. Fields and sensors used in studies (N = 46). 

Study Fields  Type of sensors Spatial 
resolution [m]  No. Size [ha] Genotypes Satellite UAV In-field 

Adak et al. (2021) 2 NR 100 – Yes – NR 
Alebele et al. (2021) 60 NR 1 Yes – – 10 
Barbosa et al. (2020) 9 360 1 Yes – – – 
Barzin et al. (2020) 1 0.8 1 – Yes – NR 
Basir et al. (2021) 1 0.02 1 – – – – 
Castaldi et al. (2015) 7 219 4 Yes – – 10 
Chen and Jing (2017) 36 NR 1 Yes – – NR 
Choudhury et al. (2021) 1 0.14 18 – Yes Yes 0.01 (UAV) 
Costa et al. (2022) 1 0.08 40 – Yes – NR 
Danilevicz et al. (2021) 1 NR 1113 – Yes – NR 
da Silva et al. (2020) 3 NR 1 – Yes Yes 0.10 
Eugenio et al. (2020) 1 NR 1 – Yes – 0.07 
Fajardo and Whelan (2021) 11 3300 1 Yes – Yes 10 
Fan et al. (2021) 3 NR 1 – Yes Yes NR 
Fei et al. (2021a) 1 NR 211 – Yes – NR 
Fei et al. (2021b) 1 NR 30 – Yes – NR 
Feng et al. (2020) 29 NR >1 Yes – – NR 
Fieuzal et al. (2017) 30 0.5 to 39.3 1 Yes – Yes 8 to 20 
Fieuzal et al. (2020) 12 3.2 to 28.6 1 Yes – – 10 
Filippi et al. (2019) NR NR >1 Yes – Yes 250 
Florence et al. (2021) 1 0.10 2 – – Yes – 
García-Martínez et al. (2020) 1 0.24 1 – Yes – 0.02 
Habyarimana and Baloch (2021) 23 174 >1 Yes – Yes 10 
Hassanzadeh et al. (2021) 1 NR 6 – Yes – 0.03 
Hunt et al. (2019) 39 662 1 Yes – – 10 
Kross et al. (2020) 22 NR 2 Yes Yes – 1 (UAV) 
Li et al. (2021) 220* NR 6 Yes – – NR 
Meng et al. (2021) 1 28.8 1 Yes – – NR 
Nevavuori et al. (2019) 9 89.3 1 – Yes – NR 
Nevavuori et al. (2020) 9 85.1 1 – Yes – NR 
Ngie and Ahmed (2018) 2 208 NR Yes – – 10 
Niedbała et al. (2019a) 301 NR 1 – – – – 
Niedbała et al. (2019b) 328 NR 1 – – – – 
Ozcan et al. (2021) 142 NR 1 Yes – – NR 
Ramos et al. (2020) 1 NR 11 – Yes – NR 
Sagan et al. (2021) 3 1.34 99 Yes Yes – 0.01 (UAV) 
Šestak et al. (2018) 1 3.9 1 – – Yes – 
Shafiee et al. (2021) 1 NR 394 – Yes – NR 
Sharifi (2021) NR NR 1 Yes – – 10 
Tian et al. (2021) 10 NR 1 Yes – – 500 
Wan et al. (2020) 1 NR 1 – Yes Yes NR 
Wen et al. (2021) 5 NR 3 – – Yes – 
Zhang et al. (2020) NR NR >2 Yes – – 30 
Zhang et al. (2021) 7531 NR 1 Yes – – 1000 
Zhou et al. (2021a) 1 NR 116 – Yes Yes 0.01 (UAV) 
Zhou et al. (2021b) 2 NR 1 – Yes – 0.06 

Count n/a n/a n/a 21 21 12 n/a 

Note. NR = not reported. UAV = unmanned aerial vehicle. * = different per type of grain. 
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3.3. Data preprocessing 

Table 4 indicates that 21 studies reported the adoption of a feature selection method. Filter-based 

methods included the use of correlation analysis to remove strongly correlated features (six studies) 

and the use of principal component analysis to transform strongly correlated features into a smaller 

number of principal components (three studies). The most frequent embedded method was Random 

Forests feature selection (Barzin et al., 2020; Ozcan et al., 2021; Ramos et al., 2020; Sagan et al., 

2021). All other methods were adopted in one study each, including wrapper-based methods, such 

as particle swarm optimization (Hassanzadeh et al., 2021) and sequential forward selection (Shafiee 

et al., 2021). Regarding the number of selected features, information was only available in 20 

articles (not tabulated). Studies at the lower end used three (Barzin et al., 2020; Ngie and Ahmed, 

2018) and four features (Florence et al., 2021; Wen et al., 2021; Zhang et al., 2020). Eight studies 

considered at least 20 features, with a maximum of 35 features (Fajardo and Whelan, 2021). 

Table 4. Types of feature selection methods in studies (N = 46). 

Type 
No. of 
studies 

Studies 

Filter-based 
feature selection 

10 Chen and Jing (2017); Choudhury et al. (2021); Da Silva et al. (2020); 
Eugenio et al. (2020); Fei et al. (2021a; 2021b); García-Martínez et al. 
(2020); Ramos et al. (2020); Šestak et al. (2018); Zhang et al. (2020) 

Embedded 
feature selection 

8 Alebele et al. (2021); Barzin et al. (2020); Habyarimana and Baloch (2021); 
Ngie and Ahmed (2018); Ozcan et al. (2021); Ramos et al. (2020); Sagan et 
al. (2021); Zhang et al. (2021) 

Wrapper-based 
feature selection 

4 Feng et al. (2020); Hassanzadeh et al. (2021); Kross et al. (2020); Shafiee et 
al. (2021) 

3.4. Model training 

Table 5 shows that 18 different algorithms were applied in the selected studies. The most frequent 

algorithms were Artificial Neural Networks (20), Linear Regression (19), and Random Forests (18). 

Five other algorithms were only considered in one study each. The largest number of algorithms 

used in a single study was seven. Eleven studies tested two algorithms and twenty studies focused 

on one algorithm each. 

Twenty-five articles report the size of the training set, by stating either the number of 

examples or a percentage value from which the number could be calculated (not shown in Table 5). 

The number varied between 16 in the study by Habyarimana and Baloch (2021) and more than 4000 

in three studies (Danilevicz et al., 2021; Fajardo and Whelan, 2021; Hunt et al., 2019). 
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Table 5. Machine learning algorithms in studies (N = 46). 

Algorithm 
No. of 
studies 

Studies 

Artificial Neural Networks 20 Barbosa et al. (2020); Basir et al. (2021); Chen and Jing (2017); 
Choudhury et al. (2021); Danilevicz et al. (2021); Eugenio et al. (2020); 
Fieuzal et al. (2017); Garzia-Martinez et al. (2020); Habyarimana and 
Baloch (2021); Kross et al. (2020); Niedbala et al. (2019a; 2019b); 
Ozcan et al. (2021); Ramos et al. (2020); Sagan et al. (2021); Šestak et 
al. (2018); Sharifi (2021); Tian et al. (2021); Zhang et al. (2021); Zhou 
et al. (2021b) 

Linear Regression 19 Adak et al. (2021); Barbosa et al. (2020); Basir et al. (2021); Barzin et 
al. (2020); Castaldi et al. (2015); Chen and Jing (2017); Choudhury et al. 
(2021); Fan et al. (2021); Feng et al. (2020); Florence et al. (2021); 
Habyarimana and Baloch (2021); Hassanzadeh et al. (2021); Meng et al. 
(2021); Ozcan et al. (2021); Ramos et al. (2020); Sagan et al. (2021); 
Šestak et al. (2018); Zhang et al. (2020); Zhou et al. (2021b) 

Random Forests 18 Barbosa et al. (2020); Danilevicz et al. (2021); Fan et al. (2021); Fei et 
al. (2021a); Feng et al. (2020); Fieuzal et al. (2020); Filippi et al. (2019); 
Habyarimana and Baloch (2021); Hunt et al. (2019); Li et al. (2021); 
Meng et al. (2021); Ngie and Ahmed (2018); Ozcan et al. (2021); 
Ramos et al. (2020); Sagan et al. (2021); Wan et al. (2020); Wen et al. 
(2021); Zhou et al. (2021b) 

Support Vector Regression 8 Barbosa et al. (2020); Choudhury et al. (2021); Fei et al. (2021a); Meng 
et al. (2021); Ramos et al. (2020); Sagan et al. (2021); Shafiee et al. 
(2021); Zhou et al. (2021b) 

Gaussian Process 
Regression 

6 Alebele et al. (2021); Choudhury et al. (2021); Fei et al. (2021a); 
Florence et al. (2021); Meng et al. (2021); Sharifi (2021) 

Convolutional Neural 
Networks 

5 Barbosa et al. (2020); Fajardo and Whelan (2021); Nevavuori et al. 
(2019); Nevavuori et al. (2020); Zhou et al. (2021a) 

Gradient Boosting 4 Barzin et al. (2020); Danilevicz et al. (2021); Habyarimana and Baloch 
(2021); Zhang et al. (2021) 

k-Nearest Neighbor 3 Meng et al. (2021); Ramos et al. (2020); Sharifi (2021) 
LASSO 3 Adak et al. (2021); Shafiee et al. (2021); Zhang et al. (2021) 
Decision Tree 3 Da Silva et al. (2020); Fajardo and Whelan (2021); Sharifi (2021) 
Elastic Net Regression 2 Adak et al. (2021); Fei et al. (2021b) 
Ensemble Learner 2 Fei et al. (2021a); Ramos et al. (2020) 
Ridge Regression 2 Adak et al. (2021); Fei et al. (2021a) 
Adaptive Boosting 1 Meng et al. (2021) 
Bayesian Linear Regression 1 Alebele et al. (2021) 
Bayesian Ridge Regression 1 Habyarimana and Baloch (2021) 
Cubist Regression 1 Castaldi et al. (2015) 
Sigcomp 1 Costa et al. (2022) 

3.5. Model evaluation 

We report the results for the evaluation phase divided into (1) the experimental manipulation of 

factors, (2) the assessment of performance using cross-validation and test sets, (3) performance 

metrics adopted, and (4) the relationship between prediction horizon and performance. 
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3.5.1. Experimental manipulation 

Table 6 reveals that about half of the studies tested different ML algorithms and different prediction 

horizons. Eleven studies assessed the impact of two or more different vegetation indices on 

performance. Overall, the number of tested factors was either one (17), two (18), three (6), or four 

(3). Three studies did not manipulate any factor but administered a single experimental condition 

(da Silva et al., 2020; Eugenio et al., 2020; Zhou et al., 2021a). 

Regarding ML algorithms, many studies compared the performance of linear regression 

modeling with at least one other algorithm that does not assume linear additive relationships 

between independent and dependent variables, such as ANN and RF. Thirteen of these fifteen 

studies provided evidence for the lower performance of the linear regression algorithm. With 

respect to different prediction horizons, 17 of 22 studies found better performance for smaller 

prediction horizons. 

Table 6. Experimental manipulation in studies (N = 46). 

Factor 
No. of 
studies 

Studies 

ML algorithm 26 Adak et al. (2021); Alebele et al. (2021); Barbosa et al. (2020); Barzin et 
al. (2020); Basir et al. (2021); Castaldi et al. (2015); Chen and Jing 
(2017); Choudhury et al. (2021); Danilevicz et al. (2021); Fajardo and 
Whelan (2021); Fei et al. (2021a); Feng et al. (2020); Florence et al. 
(2021); Habyarimana and Baloch (2021); Meng et al. (2021); Nevavuori 
et al. (2020); Ozcan et al. (2021); Ramos et al. (2020); Sagan et al. 
(2021); Šestak et al. (2018); Shafiee et al. (2021); Sharifi (2021); Tian et 
al. (2021); Zhang et al. (2020; 2021); Zhou et al. (2021b) 

Prediction horizon 22 Barzin et al. (2020); Castaldi et al. (2015); Fei et al. (2021a; 2021b); 
Feng et al. (2020); Fieuzal et al. (2017; 2020); Florence et al. (2021); 
Garcia-Martinez et al. (2020); Hassanzadeh et al. (2021); Hunt et al. 
(2019); Li et al. (2021); Nevavuori et al. (2019; 2020); Ngie and Ahmed 
(2018); Niedbala et al. (2019a; 2019b); Sagan et al. (2021); Shafiee et al. 
(2021); Sharifi (2021); Wan et al. (2020); Zhang et al. (2021) 

Vegetation indices 11 Alebele et al. (2021); Choudhury et al. (2021); Fan et al. (2021); Fei et 
al. (2021b); Florence et al. (2021); Hassanzadeh et al. (2021); Hunt et al. 
(2019); Ngie and Ahmed (2018); Ramos et al. (2020); Zhang et al. 
(2021); Zhou et al. (2021b) 

Feature combination 7 Chen and Jing (2017); Garcia-Martinez et al. (2020); Meng et al. (2021); 
Ozcan et al. (2021); Shafiee et al. (2021); Wan et al. (2020); Wen et al. 
(2021) 

Image data 3 Danilevicz et al. (2021); Fajardo and Whelan (2021); Sagan et al. (2021) 
Feature selection method 2 Choudhury et al. (2021); Hassanzadeh et al. (2021) 
Fertilization 2 Danilevicz et al. (2021); Wan et al. (2020) 
Genotype 2 Costa et al. (2022); Kross et al. (2020) 
Number of examples 2 Filippi et al. (2019); Wan et al. (2020) 
Agro-ecological zone 1 Zhang et al. (2021) 
Canopy 1 Florence et al. (2021) 
Irrigation 1 Fei et al. (2021a) 
Planting date 1 Adak et al. (2021) 
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3.5.2. Model assessment 

Table 7 presents the results of the model assessment criteria. Three groups of studies can be 

identified. The first group includes 13 studies that only applied cross-validation. The second group 

comprises 14 studies that only used a test set for model evaluation. The last group adopted cross-

validation to select models from a set of alternative models and then evaluated the models on a test 

set (19 studies). With respect to cross-validation, 4 of the 32 studies defined the folds temporally 

and 28 studies used cross-sectional folds. Among the 33 studies using a test set, seven test sets 

included unknown observations from a different season (temporal test set). Information about the 

size of the test set was available from 19 articles, and the size ranged from only 8 (Chen and Jing, 

2017) to more than 2000 examples (Hunt et al., 2019; Nevavuori et al., 2019). 

3.5.3. Performance metrics 

Table 8 shows the results for the adoption of performance metrics. The most frequent metric was 

the RMSE (38), which is defined as the root of the mean square error, and thus has the same unit as 

the yield variable (i.e., kg per ha). Eleven studies indicated the normalized RMSE (defined as the 

RMSE divided by either the mean or range of the observed yield; otherwise, the type of 

normalization was not specified). The second-most frequent metric was R2 (32), which measures 

how much of the variance in the yield variable can be determined by the features included in the 

prediction model. It indicates how good the prediction model fits to the data (a value of 1 represents 

a perfect fit and 0 stands for no fit). Thirteen studies reported the MAE (same unit as the yield 

variable), and nine studies reported the MAPE, which is the mean of the ratio between the absolute 

error and observed yield (percentage). 
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Table 7. Model assessment in studies (N = 46). 

Study Cross-validation:  Test set:   
 No. of folds Type Percentage Examples Type 

Adak et al. (2021) 10 CS – – – 
Alebele et al. (2021) – – NR NR CS 
Barbosa et al. (2020) 5 CS 20+20 NR CS 
Barzin et al. (2020) 5 CS – – – 
Basir et al. (2021) 10 CS 11 20 CS 
Castaldi et al. (2015) – – NR NR CS 
Chen and Jing (2017) 28 CS 22 8 CS 
Choudhury et al. (2021) 10 CS 15 NR CS 
Costa et al. (2022) 5 CS – – – 
Danilevicz et al. (2021) 5 CS 10 443 (*) CS 
da Silva et al. (2020) – – NR NR T 
Eugenio et al. (2020) 5 CS 30 9 CS 
Fajardo and Whelan (2021) – – 9 9 to 14 CS 
Fan et al. (2021) – – 30 NR CS 
Fei et al. (2021a) 10 CS 10 84 (*) CS 
Fei et al. (2021b) 10 CS – – – 
Feng et al. (2020) 10 T – – – 
Fieuzal et al. (2017) 3 CS 33 10 CS 
Fieuzal et al. (2020) 10 CS – – – 
Filippi et al. (2019) a) NR; b) 3 a) CS; b) T – – – 
Florence et al. (2021) 10 CS 50 NR T 
García-Martínez et al. (2020) – – 15+15 NR CS 
Habyarimana and Baloch (2021) 5 CS 30 NR CS 
Hassanzadeh et al. (2021) 5 CS – – – 
Hunt et al. (2019) 10 CS 30 2638 (*) CS 
Kross et al. (2020) – – a) 50; b) NR NR a) CS; b) T 
Li et al. (2021) 7 T – – – 
Meng et al. (2021) 5 CS 50 (*) NR T 
Nevavuori et al. (2019) 3 CS 15 2280 (*) CS 
Nevavuori et al. (2020) 5 CS 30 NR CS 
Ngie and Ahmed (2018) – – 33 32, 36 CS 
Niedbała et al. (2019a) – – 15+15 45+45 T 
Niedbała et al. (2019b) – – 15+15 44+44 T 
Ozcan et al. (2021) 10 CS – – – 
Ramos et al. (2020) 10 CS – – – 
Sagan et al. (2021) – – 30 64, 87 (*) CS 
Šestak et al. (2018) NR CS 50 18 CS 
Shafiee et al. (2021) 10 CS 30 119 CS 
Sharifi (2021) NR CS – – – 
Tian et al. (2021) 10 T – – – 
Wan et al. (2020) – – NR 100 T 
Wen et al. (2021) 10 CS 20 231 CS 
Zhang et al. (2020) – – 40 106 CS 
Zhang et al. (2021) 10 CS 30 NR CS 
Zhou et al. (2021a) – – 30 NR CS 
Zhou et al. (2021b) 5 CS 30 100 CS 

Count 32 n/a 33 n/a n/a 

Note. CS = cross-sectional. NR = not reported. T = temporal. (*) = no exact figures reported. 
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Table 8. Performance metrics reported in studies (N = 46). 

Study RMSE R2 NRMSE MAE MAPE r Other 

Adak et al. (2021) Yes Yes – Yes – Yes – 
Alebele et al. (2021) Yes Yes – – – – – 
Barbosa et al. (2020) – – – – – – Yes 
Barzin et al. (2020) Yes Yes – – – – – 
Basir et al. (2021) Yes Yes – – – – Yes 
Castaldi et al. (2015) Yes – – – – – Yes 
Chen and Jing (2017) Yes Yes Yes (1) – – – – 
Choudhury et al. (2021) Yes Yes – Yes – – Yes 
Costa et al. (2022) Yes – – – Yes – Yes 
Danilevicz et al. (2021) Yes Yes Yes (2) – – – – 
da Silva et al. (2020) Yes Yes – – – – Yes 
Eugenio et al. (2020) Yes – – Yes – Yes Yes 
Fajardo and Whelan (2021) Yes – – – – – Yes 
Fan et al. (2021) Yes Yes – – – – – 
Fei et al. (2021a) Yes Yes – – – – – 
Fei et al. (2021b) Yes Yes Yes (1) Yes – – – 
Feng et al. (2020) Yes – – – Yes Yes Yes 
Fieuzal et al. (2017) Yes Yes – – – – – 
Fieuzal et al. (2020) Yes Yes Yes (3) – – – – 
Filippi et al. (2019) Yes – – – – – Yes 
Florence et al. (2021) Yes Yes – – Yes – – 
García-Martínez et al. (2020) Yes – – Yes – Yes – 
Habyarimana and Baloch (2021) Yes Yes – Yes Yes – Yes 
Hassanzadeh et al. (2021) Yes Yes Yes (3) – – – – 
Hunt et al. (2019) Yes Yes – – – – – 
Kross et al. (2020) – – – – – Yes Yes 
Li et al. (2021) – – Yes (1) – – Yes – 
Meng et al. (2021) Yes Yes – – – – – 
Nevavuori et al. (2019) – – – Yes Yes – – 
Nevavuori et al. (2020) – Yes – Yes Yes – – 
Ngie and Ahmed (2018) Yes Yes – – – – – 
Niedbała et al. (2019a) Yes – – Yes Yes – Yes 
Niedbała et al. (2019b) Yes – – Yes Yes – Yes 
Ozcan et al. (2021) Yes Yes – – – – – 
Ramos et al. (2020) – – – Yes – Yes – 
Sagan et al. (2021) – Yes Yes (1) – – – – 
Šestak et al. (2018) Yes Yes – – – – – 
Shafiee et al. (2021) – Yes – – – – Yes 
Sharifi (2021) Yes Yes – Yes – – – 
Tian et al. (2021) Yes Yes Yes (3) – Yes – – 
Wan et al. (2020) Yes Yes Yes (1) – – – – 
Wen et al. (2021) Yes Yes – – – – Yes 
Zhang et al. (2020) Yes Yes – Yes – – – 
Zhang et al. (2021) Yes Yes Yes (1) – – – – 
Zhou et al. (2021a) Yes Yes Yes – – – – 
Zhou et al. (2021b) Yes Yes – – – – – 

Count 38 32 11 13 9 7 16 

Note. MAE = mean absolute error. MAPE = mean absolute percentage error. NRMSE = normalized RMSE by (1) mean, (2) 
range, or (3) not specified. r = Pearson correlation coefficient. R2 = coefficient of determination. RMSE = root mean square 
error. 
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3.5.4. Relationship between prediction horizon and performance 

Twenty-three studies trained at least one prediction model for a specific horizon and reported R2 

(details on the data extraction are available in the Supplement). This set of studies allowed us to 

explore the relationship between prediction horizon and R2. The scatter plot shown in Fig. 3 presents 

the results for 30 prediction models from these studies and indicates the respective grain crops. For 

predictions between 0.8 and 2.7 months before harvest, the majority of models yielded an R2 of at 

least 0.81, and the best models had an R2 of between 0.86 and 0.92. Performance was much lower 

for models that used larger prediction horizons, such as 0.567 for a horizon of four months and 

0.495 for eight months. 

 

Fig. 3. R2 by prediction horizon for 30 models. 

Figure 4 shows the performance results based on the prediction time relative to the growth 

period (as a measure of how far along the growth period is). Six models made predictions when 

the season had progressed less than 30 percent. On the other hand, twelve models predicted 
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yields much later when more than 70 percent of the growth period had passed. For the former 

group of models, we note that the R2 varied greatly between 0.23 and 0.92, while it was at least 

0.60 for the latter group of models. Overall, variance declined with increasing progress of the 

growth period.  

 

Fig. 4. R2 by prediction time relative to growth period for 26 models. 
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4. Discussion 

4.1. Principal findings and implications 

This review analyzed forty-six studies that applied ML technology to predict field-scale grain yield 

in a season. The studies addressed yield prediction for the full range of vegetation stages of grain 

crops. Specifically, the prediction times ranged from the earliest date possible, i.e., shortly before 

or at the time of sowing, to a few weeks before harvest. Even the latter prediction times can assist 

crop farmers’ decisions regarding corrective measures used to enhance yield (e.g., delaying the time 

of harvest). In addition, almost one-half of the studies tested different prediction horizons. These 

findings highlight the important role of the prediction horizon in the literature. 

4.1.1. Data collection 

With respect to the number of fields, seasons, and genotypes examined, no predominant type of 

study emerged. Collecting data for multiple genotypes grown on multiple fields in more than one 

season increases the number of examples available for model training and evaluation, thus bearing 

potential for the greater generalizability of a prediction model. However, each additional field and 

genotype requires extra effort for data collection, and adding one season doubles the time required 

for conducting a study. Therefore, it is not surprising that many studies focused on one genotype, 

field, or season. A noteworthy finding is the huge variety of field sizes (from hundreds of square 

meters to hundreds of hectare). This variety can partly be attributed to differences between studies 

conducted at research facilities and farms. The former studies enable better control of confounding 

factors, but this higher level of interval validity might decrease the variability of the data. Prediction 

models learned from that data might exhibit less generalizability compared to models learned from 

data collected in less controlled settings. 

As in any predictive modeling scenario, a clear specification of the prediction problem and 

the data set used is necessary to be able to compare and integrate the results with related studies 

(Shmueli, 2010). While our review highlights the comprehensive coverage of prediction horizons, 

we also found considerable heterogeneity in the reporting. The studies adopted various units of 

measurements, such as time intervals, calendar dates, vegetation stages, and combinations of them. 

Some articles lacked sufficient information regarding the time when the last input data were 

recorded and the time of harvest, and many articles only provided rough details. Examples of good 

reporting are the study by Sagan et al. (2021), which provided the time of measurement for all input 

variables and the exact dates for sowing and harvesting, and the study by Fieuzal et al. (2020), 

which reported exact dates and visualized the performance results for different prediction horizons.  

The data attributes considered in the studies comprised a broad coverage of factors 

associated with the growth of grain crops. On one hand, we identified studies that exclusively 

collected data for one category of attributes, such as weather (Nevavuori et al., 2020), management 

(Costa et al., 2022), soil (Fajardo and Whelan, 2021), and vegetation indices (Ramos et al., 2020). 

On the other hand, in every fifth study, the prediction model was trained with much richer data 

integrating weather, management, and vegetation indices. This difference is remarkable, given the 



 

22 
 

additional time and effort required to collect and preprocess these data originating from different 

sources. Another finding is the treatment of vegetation indices as the most frequently used category 

of input data: More than half of the studies used at least one VI but no weather information, 

assuming that all effects of weather on crop growth would be more or less reflected in the images 

from which the VIs were calculated. About one-third of the studies considered both types of 

attributes by using VIs as a direct measure of growth and weather as a causal factor of growth. 

The high prevalence of vegetation indices in the studies mirrored in the types of sensors 

used, with half of the studies using data collected via satellites and other half using UAVs. The 

choice of sensor has major consequences for the development of a prediction model. Satellite 

images are readily available on a global scale for many decades; the acquisition and processing to 

calculate VIs require relatively low effort. However, this advantage comes at the cost of lower 

spatial resolutions, smaller frequencies, and ground images potentially covered by clouds. Our 

review show that the spatial resolution of images retrieved from satellites varies greatly (from 10 

to 1000 meters per pixel). It is evident that the selection of satellite imagery should be aligned to 

the field size, so that reflectance information sufficiently captures the within-field variability. 

Against this backdrop, the level of reporting in that regard is rather low. UAVs produce images of 

much higher resolution, and the time of recording is determined by the developer’s requirements, 

though each field survey requires considerable effort. A common theme in the literature is the 

empirical evaluation of satellites vis-à-vis UAVs as a basis for yield predictions, and our review 

corroborates this theme for the early prediction of grain yield. The results of single studies aid 

understand the usefulness of either type of sensor, but the appraisal of evidence is still hindered by 

the heterogeneity of studies. 

4.1.2. Data preprocessing 

Feature selection is an important phase in the development of prediction models because it allows 

for reductions in the often-high dimensionality of the used data set. In grain yield prediction, this 

dimensionality originates from the various categories of input data and the many possible attributes 

within each category. Therefore, we expected that a large percentage of studies applied feature 

selection methods to focus on attributes that helped achieve high performance and omitted attributes 

that represented noise in the data. This expectation was partly met, with less than half of the studies 

reporting on feature selection. These studies were indeed successful in reducing the number of 

features without losing prediction performance, and some studies showed that models trained with 

fewer features exhibited greater performance. For instance, Barzin et al. (2020) chose a three-

feature model because performance decreased when more features were added, and Chen and Jing 

(2017) chose a six-feature model that was computed from 14 candidate features. 

It is noteworthy that some studies performed an analysis of the features but did not take 

advantage of the findings to reduce their number. These studies determined the relative feature 

importance using in-built techniques of the respective ML algorithms. For instance, in a study by 

Wen et al. (2021), 5 of 17 features exhibited extremely low importance-indices (i.e., seed rate, 

preceding crop, fertilizer method, plant density, and soil pH). Therefore, it is likely that a more 

parsimonious model with less features would have performed equally well. Similarly, a study by 
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Zhou et al. (2021b) reported a very low importance for plant height but retained the feature in the 

model. 

Collectively, the results of our review indicate that feature selection can be a useful 

technique to reduce the high dimensionality of data sets. The variety of methods used suggests that 

researchers are aware of the available techniques. We also note studies that proposed domain-

specific approaches to feature selection and found evidence for their usefulness (Hassanzadeh et 

al., 2021; Shafiee et al., 2021). However, the evidence base regarding feature selection was rather 

small. Therefore, we recommend that future research integrate feature selection as a standard 

technique into the development of yield prediction models (provided the number of features is not 

small). We also suggest examining alternative feature selection methods through experimental 

evaluation. Feature selection appears specifically promising due to the large number of different 

but related vegetation indices that are available from remote sensing. 

4.1.3. Model training 

The most used ML algorithms were ANN, LR, and RF. This finding largely corroborates 

observations of previous reviews examining crop yield prediction in general (Bali and Singla, 2022; 

Benos et al., 2021; van Klompenburg et al., 2020). In more than three-fourths of the studies, at least 

one of the three algorithms was tested. This dominance was coincident with only a handful of 

studies using a deep learning (DL) algorithm. Specifically, Convolutional Neural Networks were 

present in five studies, whereas no other DL algorithm (such as Long Short-Term Memory 

Networks, Recurrent Neural Networks, and Multilayer Perceptrons) was included in any study. In 

view of the improvements that DL has enabled to speech recognition, object detection, and many 

other domains (LeCun et al., 2015), it would be interesting to know how useful DL algorithms are 

in predicting continuous grain yield variables compared with the more traditional ML algorithms. 

It is unfortunate that about 45% of the articles provided no information on the size of the 

training set used. This finding is worrisome for two reasons. First, these studies cannot support 

developers’ estimatation of the number of input-output pairs that are required or reasonable for the 

training of a prediction model. Second, if a prediction model is trained from too few example pairs, 

its mapping function will become unreliable, even though the model might exhibit relatively good 

performance in the evaluation. The robustness of the model might be limited such that the model 

will perform worse in a different evaluation. For readers to be able to assess the adequacy of a 

training set, they must at least know its size. To overcome the current situation, articles should 

clearly indicate the absolute and relative size of the training set, which can be complemented with 

the same information for the test set (if used). All this information can elegantly be summarized in 

one sentence, such as the following: “[..] the dataset was divided into train (70%, 420 samples) and 

test (30%, 119 samples) sets” (Shafiee et al., 2021, p. 4). 

4.1.4. Model evaluation 

The effectiveness of a trained prediction model must be rigorously assessed via well-executed 

evaluation techniques. Evaluation is a crucial phase because there can be no ML prediction model 

that is a-priori superior to another model (Wolpert, 1996). For instance, a model trained from input 
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data for one field might perform equally well, much better, or much worse when applied to new 

data from a different field, even if the two fields are similar. The burden is on the developer to 

demonstrate that the model does not overfit the training set. Overfitting characterizes a model that 

learned the examples in the training set too well such that its performance on new data is negatively 

impacted. The results of our review show that more than 70% of the studies conducted the 

evaluation on a separate test set of new data. This approach represents the “gold standard” in ML, 

whereas cross-validation is the preferred technique if the available data are too small to divide into 

sufficiently large training and test sets. Despite the importance of evaluation on new data, only 19 

of 33 studies reported the size of the test set. Although larger test sets require more effort for data 

collection, they enable the better assessment of performance. Therefore, the size of the test set 

should be included in the reporting and the results should be discussed in view of that size. 

With respect to the adoption of performance metrics, we believe that the findings of our 

review have four important implications for future research. First is the duality of metrics with units 

of measurement (e.g., RMSE and MAE) and metrics with no units (e.g., R2 and NRMSE). The 

former metrics can be directly interpreted in the domain because their units are the same as the yield 

variable; hence, they are can be used to inform management decisions. The latter metrics enable 

collation of performance across different grains, fields, seasons, and data sets. With each group of 

metrics serving a different purpose, studies should include metrics of both groups in their reporting 

to address these purposes. This approach can help paint a more comprehensive picture of 

performance. 

Second is the great variety of metrics, which makes the comparison and integration of 

evidence from individual studies difficult. The results of different studies can only be collated if the 

same metrics have been reported (although this condition is not sufficient). While the RMSE and 

R2 were the most frequently used metrics, they only accounted for 80% and 70% of the studies, 

respectively. We recommend reporting a broader set of standard metrics in every study to extend 

the evidence base for meta-analysis.  

Third is the incidence of metrics that are either less useful or inadequate, and should thus 

be replaced or abandoned from the reporting. One advantage of the MAE over the RMSE is that 

any difference between predicted and observed yield has a proportional effect on the metric. 

Although this advantage has been identified in other studies (Chai and Draxler, 2014; Willmott and 

Matsuura, 2005), only every fourth study reported the MAE. Similarly, the MAPE can be a useful 

replacement for the NRMSE, and the MAE and MAPE should then be reported in combination. 

Regarding unitless metrics, the Pearson correlation coefficient was present in seven studies, even 

though a linear relationship does not demonstrate that a prediction error is small (Sheiner and Beal, 

1981). For instance, let the predicted yield always be 40% greater than the observed yield. In this 

case, the error is very large (MAPE = 0.4), whereas the correlation is perfect (r = 1). In other words, 

the correlation coefficient does not tell us anything about the magnitude of error. In addition, this 

coefficient assumes that grain yields are uniformly distributed, which is often not the case or studies 

did not report on whether the assumption was fulfilled. 
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Fourth is the much lower R2 of predictions that were made many months before harvest, as 

signified by the sharp drop to less than 0.6 for predictions four or more months before harvest. On 

the other hand, most studies used smaller prediction horizons (up to 2.7 months), and the majority 

of these models achieved an r-squared of at least 0.81. The latter finding suggests that – contrary to 

our hypothesis – the relationship between prediction horizon and R2 is not monotonically negative. 

Noting that few studies addressed predictions between three and eight months before harvest, we 

suggest that future research address this range to test the boundaries of very high performance. For 

instance, a recent study demonstrated how the most accurate predictions of sugarcane yield (which 

is not a grain crop) can be made one month earlier than in previous studies (Akbarian et al., 2022). 

In a similar vein, our analysis of the prediction time relative to the growth period showed that 

prediction models for predictions very early in the season are underrepresented and exhibit greater 

variance of R2 than models for predictions late in the season. 

Taken together, the heterogeneity in the reporting of performance metrics represents a 

barrier to the integration of evidence for the effectiveness of prediction models. This barrier hinders 

a more comprehensive synthesis of study results. Such synthesis can aid understanding of the 

relationships between factors considered in the design of yield prediction models and the facets of 

prediction performance. Our examination of the relationship between prediction horizon and R2 

(Section 3.5.4) uncovered that the prediction horizon plays an important but nuanced role. 

Therefore, conclusions drawn about the superiority of a specific ML technique (or prediction 

model) over another must take this relationship into account. The validity of conclusions can be 

enhanced by focusing on studies that tested similar prediction horizons and integrating prediction 

horizon as a confounding factor into the synthesis. 

4.2. Limitations 

Some limitations of our review must be noted. First, although we focused on early prediction at the 

field scale for grain crops, the set of studies exhibited considerable variance in the design of 

experiments, input data used, and assessment of prediction performance. Therefore, it was not 

possible to collate the performance results of all studies, except for the synthesis of results for 

prediction horizon and R2 (this synthesis was limited to 23 of 46 studies). Second, subgroup analyses 

for different types of grains were not possible due to the small sample size. Third, our review was 

restricted to the information available from the articles, so it is possible that researchers have 

adopted additional techniques, conducted further analyses, and considered the obtained results in 

their development and final evaluation. Space constraints of journals might have forced researchers 

to focus on key issues and findings, thus hindering a more elaborate reporting of the ML process of 

data collection, data preprocessing, model training, and model evaluation. Fourth, some studies 

reported no exact quantitative results but provided only rough indications or charts, which made the 

data extraction intricate. 
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5. Conclusion 

This systematic review examined the adoption of machine learning technology for the early 

prediction of grain yield at the field scale. The results provide insights into the richness of the ML 

techniques used for data collection, preprocessing, model training, and model evaluation. We 

identified five areas that bear potential to enhance the evidence base for the effectiveness of 

prediction models. First, we recommend further research to test the boundaries of very high 

performance, i.e., for prediction horizons greater than three months. The results of our quantitative 

synthesis suggest a non-monotonic relationship between prediction horizon and performance, and 

this finding was contrary to our expectation. Second, the large amount and variety of input data 

available for field-scale yield prediction appear attractive for the increased adoption of deep 

learning algorithms. Third, although field-level data often exhibit high dimensionality, in particular 

due to multiple vegetation indices, less than half of the studies applied feature selection. Fourth, a 

complete reporting of the number of examples included in the training and test sets can aid 

assessments of the robustness of the proposed models. Fifth, heterogeneity in the reporting of 

performance metrics is still a major barrier to the accumulation of evidence. This barrier can be 

easily overcome by reporting unitless metrics (i.e., R2, NRMSE, and MAPE) along meaningful 

metrics with units (i.e., RMSE and MAE). Collectively, a greater uniformity of studies on grain 

yield prediction can facilitate the interpretation of individual studies, aid integration of the 

burgeoning results on alternative ML techniques, and ultimately better inform the development of 

accurate and robust prediction models. 
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